Heavy metal(loid) bioaccumulation in fish and its implications for human health

Submitted: 4 July 2024
Accepted: 25 November 2024
Published: 20 December 2024
Abstract Views: 25
PDF: 9
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Heavy metal(loid)s (HM) pollution in aquatic environments is a serious issue due to the toxicity, persistence, bioaccumulation, and biomagnification of these pollutants. The main sources of HM contamination are industrial activities, mining, agricultural practices, and combustion of fossil fuels. Fish can accumulate HMs through a process called bioaccumulation. As larger predatory fish consume smaller fish, these HMs enter the main food chains and can become increasingly concentrated in their tissues and finally reach humans. Here, we provided a general and concise conclusion from current research findings on the toxicological effects on different body systems. Exposure to HMs can lead to a range of adverse health effects, including neurological damage, developmental disorders, kidney damage, cardiovascular problems, and cancers. Their long-term accumulation can result in chronic toxicity even at low levels of exposure. HMs exert cellular cytotoxicity by disrupting essential cellular processes and structures. They can interfere with enzyme function, disrupt cell membrane integrity, induce oxidative stress, and cause DNA damage, ultimately leading to cell death or dysfunction. Prevention and control of HMs involve implementing measures to reduce their release into the environment through regulations on industrial processes, waste management, and pollution control technologies. Additionally, monitoring and remediation efforts are crucial for identifying contaminated sites and implementing strategies such as soil and water remediation to reduce human exposure and mitigate the impact on ecosystems. To conclude, HM accumulation in fish poses serious risks to public health and the environment, necessitating urgent interdisciplinary efforts to mitigate their harmful effects and promote sustainable practices that reduce HM flow into biological systems.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ahmad T, Gul S, Khan MA, Diao X, Ahmad A, Ahmad S, 2022. Bioaccumulation and health risk assessment of heavy metal (loid)s in different fish species of Hainan Island, China. Thalassas 38:1395-406. DOI: https://doi.org/10.1007/s41208-022-00474-w
Al-Ghafari A, Elmorsy E, Fikry E, Alrowaili M, Carter WG, 2019. The heavy metals lead and cadmium are cytotoxic to human bone osteoblasts via induction of redox stress. PLoS One 14:e0225341. DOI: https://doi.org/10.1371/journal.pone.0225341
Alengebawy A, Abdelkhalek ST, Qureshi SR, Wang MQ, 2021. Heavy metals and pesticides toxicity in agricultural soil and plants: ecological risks and human health implications. Toxics 9:42. DOI: https://doi.org/10.3390/toxics9030042
Ali H, Khan E, 2018. What are heavy metals? Long-standing controversy over the scientific use of the term ‘heavy metals’ – proposal of a comprehensive definition. Toxicol Environ Chem 100:6-19. DOI: https://doi.org/10.1080/02772248.2017.1413652
Amutha C, Subramanian P, 2013. Cadmium alters the reproductive endocrine disruption and enhancement of growth in the early and adult stages of Oreochromis mossambicus. Fish Physiol Biochem 39:351-61. DOI: https://doi.org/10.1007/s10695-012-9704-3
Anandkumar A, Nagarajan R, Prabakaran K, Bing CH, Rajaram R, Li J, Du D, 2019. Bioaccumulation of trace metals in the coastal Borneo (Malaysia) and health risk assessment. Mar Pollut Bull 145:56-66. DOI: https://doi.org/10.1016/j.marpolbul.2019.05.002
Aziz KHH, Mustafa FS, Omer KM, Hama S, Hamarawf RF, Rahman KO, 2023. Heavy metal pollution in the aquatic environment: efficient and low-cost removal approaches to eliminate their toxicity: a review. RSC Adv 13:17595-610. DOI: https://doi.org/10.1039/D3RA00723E
Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M, 2021. Toxic mechanisms of five heavy metals: mercury, lead, chromium, cadmium, and arsenic. Front Pharmacol 12:643972. DOI: https://doi.org/10.3389/fphar.2021.643972
Bist P, Choudhary S, 2022. Impact of heavy metal toxicity on the gut microbiota and its relationship with metabolites and future probiotics strategy: a review. Biol Trace Elem Res 200:5328-50. DOI: https://doi.org/10.1007/s12011-021-03092-4
Calogero AE, Fiore M, Giacone F, Altomare M, Asero P, Ledda C, Romeo G, Mongioì LM, Copat C, Giuffrida M, Vicari E, Sciacca S, Ferrante M, 2021. Exposure to multiple metals/metalloids and human semen quality: A cross-sectional study. Ecotoxicol Environ Saf 215:112165. DOI: https://doi.org/10.1016/j.ecoenv.2021.112165
Chamani S, Mobasheri L, Rostami Z, Zare I, Naghizadeh A, Mostafavi E, 2023. Heavy metals in contact dermatitis: a review. J Trace Elem Med Biol 79:127240. DOI: https://doi.org/10.1016/j.jtemb.2023.127240
Chen YH, Wei CF, Cheng YY, Mita C, Hoang CLD, Lin CK, Chang YT, Christiani DC, 2024. Urine cadmium and urolithiasis: a systematic review and meta-analysis. Environ Res 252:118745. DOI: https://doi.org/10.1016/j.envres.2024.118745
Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T, Gregson J, Willeit P, Warnakula S, Khan H, Chowdhury S, Gobin R, Franco OH, Di Angelantonio E, 2018. Environmental toxic metal contaminants and risk of cardiovascular disease: systematic review and meta-analysis. BMJ 362:k3310. DOI: https://doi.org/10.1136/bmj.k3310
Collins JF, 2021. Copper nutrition and biochemistry and human (patho)physiology. Adv Food Nutr Res 96:311-64. DOI: https://doi.org/10.1016/bs.afnr.2021.01.005
Ding C, Chen J, Zhu F, Chai L, Lin Z, Zhang K, Shi Y, 2022. Biological toxicity of heavy metal(loid)s in natural environments: from microbes to humans. Front Environ Sci 10:920957. DOI: https://doi.org/10.3389/fenvs.2022.920957
Dos Santos AA, Chang LW, Liejun Guo G & Aschner M. 2018. Fetal minamata disease: a human episode of congenital methylmercury poisoning. In: Slikker W, Paule MG, Wang CBT-H, eds. Toxicology of metals. Academic Press, Massachusetts, MA, USA. pp 399-406. DOI: https://doi.org/10.1016/B978-0-12-809405-1.00035-3
Emon FJ, Rohani MF, Sumaiya N, Tuj Jannat MF, Akter Y, Shahjahan M, Abdul Kari Z, Tahiluddin AB, Goh KW, 2023. Bioaccumulation and bioremediation of heavy metals in fishes—a review. Toxics 11:510. DOI: https://doi.org/10.3390/toxics11060510
Eskander SB, Saleh HM, 2020. Heavy metal-induced oxidative stress and related cellular process. In: Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, eds. Cellular and Molecular phytotoxicity of heavy metals. Springer, Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-030-45975-8_7
Gao W, Tong L, Zhao S, Sun M, Fang J, Xu Y, Ma Y, Jin L, 2023. Exposure to cadmium, lead, mercury, and arsenic and uric acid levels: results from NHANES 2007-2016. Biol Trace Elem Res 201:1659-69. DOI: https://doi.org/10.1007/s12011-022-03309-0
Ge M, Liu G, Liu H, Liu Y, 2020. Levels of metals in fish tissues of Liza haematocheila and Lateolabrax japonicus from the Yellow River Delta of China and risk assessment for consumers. Mar Pollut Bull 157:111286. DOI: https://doi.org/10.1016/j.marpolbul.2020.111286
Grau-Perez M, Caballero-Mateos MJ, Domingo-Relloso A, Navas-Acien A, Gomez-Ariza JL, Garcia-Barrera T, Leon-Latre M, Soriano-Gil Z, Jarauta E, Cenarro A, Moreno-Franco B, Laclaustra M, Civeira F, Casasnovas JA, Guallar E, Tellez-Plaza M, 2022. Toxic metals and subclinical atherosclerosis in carotid, femoral, and coronary vascular territories: the aragon workers health study. Arterioscler Thromb Vasc Biol 42:87-99. DOI: https://doi.org/10.1161/ATVBAHA.121.316358
Hamada R, Osarne M, 2023. Minamata disease and other mercury syndromes. In: Chang LW, ed. Toxicology of metals. CRC Press, Boca Raton, FL, USA. pp 337-51. DOI: https://doi.org/10.1201/9781003418917-32
Helso SN, Roug AS, Mork M, Maksten EF, Severinsen MT, 2020. Severe peripheral neuropathy from treatment with arsenic trioxide in a patient suffering from acute promyelocytic leukemia. J Hematol 9:89-92. DOI: https://doi.org/10.14740/jh617
Inayat I, Batool AI, Rehman MFU, Ahmad KR, Kanwal MA, Ali R, Khalid R, Habib SS, 2024. Seasonal variation and association of heavy metals in the vital organs of edible fishes from the river jhelum in Punjab, Pakistan. Biol Trace Elem Res 202:1203-11. DOI: https://doi.org/10.1007/s12011-023-03730-z
Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Rhodes CJ, Valko M, 2022. Essential metals in health and disease. Chem Biol Interact 367:110173. DOI: https://doi.org/10.1016/j.cbi.2022.110173
Khalaf EM, Taherian M, Almalki SG, Asban P, Kareem AK, Alhachami FR, Almulla AF, Romero-Parra RM, Jawhar ZH, Kiani F, Manesh I N, MJ M, 2023. Relationship between exposure to heavy metals on the increased health risk and carcinogenicity of urinary tract (kidney and bladder). Rev Environ Health 39:539-49. DOI: https://doi.org/10.1515/reveh-2022-0245
Kilpin KJ & Dyson PJ. 2013. Enzyme inhibition by metal complexes: concepts, strategies and applications. Chem Sci 4:1410-9. DOI: https://doi.org/10.1039/c3sc22349c
Kim HS, Kim YJ & Seo YR. 2015. An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev 20:232-40. DOI: https://doi.org/10.15430/JCP.2015.20.4.232
Kim JY, Kim SJ, Bae MA, Kim JR, Cho KH, 2018. Cadmium exposure exacerbates severe hyperlipidemia and fatty liver changes in zebrafish via impairment of high-density lipoproteins functionality. Toxicol Vitr 47:249-58. DOI: https://doi.org/10.1016/j.tiv.2017.11.007
Kothapalli CR, 2021. Differential impact of heavy metals on neurotoxicity during development and in aging central nervous system. Curr Opin Toxicol 26:33-8. DOI: https://doi.org/10.1016/j.cotox.2021.04.003
Li F jie, Yang H wei, Ayyamperumal R, Liu Y, 2022. Pollution, sources, and human health risk assessment of heavy metals in urban areas around industrialization and urbanization-Northwest China. Chemosphere 308:136396. DOI: https://doi.org/10.1016/j.chemosphere.2022.136396
Lin J, Lin X, Qiu J, You X, Xu J, 2023. Association between heavy metals exposure and infertility among American women aged 20–44 years: a cross-sectional analysis from 2013 to 2018 NHANES data. Front Public Health 11:1122183. DOI: https://doi.org/10.3389/fpubh.2023.1122183
Liu D, Shi Q, Liu C, Sun Q, Zeng X, 2023. Effects of endocrine-disrupting heavy metals on human health. Toxics 11:322. DOI: https://doi.org/10.3390/toxics11040322
Malik D, Narayanasamy N, Pratyusha VA, Thakur J, Sinha N, 2023. Inorganic nutrients: macrominerals. In: Malik D, Narayanasamy N, Pratyusha VA, eds. Textbook of nutritional biochemistry. Springer Nature, Singapore. pp 391-46. DOI: https://doi.org/10.1007/978-981-19-4150-4_11
Mochizuki H, Phyu KP, Aung MN, Zin PW, Yano Y, Myint MZ, Thit WM, Yamamoto Y, Hishikawa Y, Thant KZ, Maruyama M, Kuroda Y, 2019. Peripheral neuropathy induced by drinking water contaminated with low-dose arsenic in Myanmar. Environ Health Prev Med 24:23. DOI: https://doi.org/10.1186/s12199-019-0781-0
Monga A, Fulke AB, Dasgupta D, 2022. Recent developments in essentiality of trivalent chromium and toxicity of hexavalent chromium: Implications on human health and remediation strategies. J Hazard Mater Adv 7:100113. DOI: https://doi.org/10.1016/j.hazadv.2022.100113
Mukherjee AG, Ramesh Wanjari U, Renu K, Vellingiri B, Valsala Gopalakrishnan A, 2022. Heavy metal and metalloid - induced reproductive toxicity. Environ Toxicol Pharmacol 92:103859. DOI: https://doi.org/10.1016/j.etap.2022.103859
Müller A, Österlund H, Marsalek J, Viklander M, 2020. The pollution conveyed by urban runoff: A review of sources. Sci Total Environ 709:136125. DOI: https://doi.org/10.1016/j.scitotenv.2019.136125
Nampoothiri LP, Gupta S, 2006. Simultaneous effect of lead and cadmium on granulosa cells: A cellular model for ovarian toxicity. Reprod Toxicol 21:179-85. DOI: https://doi.org/10.1016/j.reprotox.2005.07.010
Orr SE, Bridges CC, 2017. Chronic kidney disease and exposure to nephrotoxic metals. Int J Mol Sci 18:1039. DOI: https://doi.org/10.3390/ijms18051039
Osayande O, Zou E, 2022. Lead inhibits postecdysial exoskeletal calcification in the blue crab (Callinectes sapidus). Environ Toxicol Chem 41:474-82. DOI: https://doi.org/10.1002/etc.5273
Panda BP, Mohanta YK, Parida SP, Pradhan A, Mohanta TK, Patowary K, Wan Mahari WA, Lam SS, Ghfar AA, Guerriero G, Verma M, Sarma H, 2023. Metal pollution in freshwater fish: a key indicator of contamination and carcinogenic risk to public health. Environ Pollut 330:121796. DOI: https://doi.org/10.1016/j.envpol.2023.121796
Patnaik R, Padhy RN, 2018. Comparative study on toxicity of methylmercury chloride and methylmercury hydroxide to the human neuroblastoma cell line SH-SY5Y. Environ Sci Pollut Res Inst 25:20606-14. DOI: https://doi.org/10.1007/s11356-018-2164-2
Perelló G, Martí-Cid R, Llobet JM, Domingo JL, 2008. Effects of various cooking processes on the concentrations of arsenic, cadmium, mercury, and lead in foods. J Agric Food Chem 56:11262-9. DOI: https://doi.org/10.1021/jf802411q
Peters JL, Perry MJ, McNeely E, Wright RO, Heiger-Bernays W, Weuve J, 2021. The association of cadmium and lead exposures with red cell distribution width. PLoS One 16:e0245173. DOI: https://doi.org/10.1371/journal.pone.0245173
Poudel K, Ikeda A, Fukunaga H, Brune Drisse MN, Onyon LJ, Gorman J, Laborde A, Kishi R, 2023. How does formal and informal industry contribute to lead exposure? A narrative review from Vietnam, Uruguay, and Malaysia. Rev Environ Health 39:371-88. DOI: https://doi.org/10.1515/reveh-2022-0224
Pourret O, Bollinger JC, Hursthouse A, 2021. Heavy metal: a misused term? Acta Geochim 40:466-71. DOI: https://doi.org/10.1007/s11631-021-00468-0
Rahman MS, Saha N, Molla AH, Al-Reza SM, 2014. Assessment of anthropogenic influence on heavy metals contamination in the aquatic ecosystem components: water, sediment, and fish. Soil Sediment Contam 23:353-73. DOI: https://doi.org/10.1080/15320383.2014.829025
Sevillano-Morales JS, Cejudo-Gómez M, Ramírez-Ojeda AM, Cámara Martos F, Moreno-Rojas R, 2015. Risk profile of methylmercury in seafood. Curr Opin Food Sci 6:53-60. DOI: https://doi.org/10.1016/j.cofs.2016.01.003
Shah SB. 2021. Heavy metals in the marine environment - an overview. In: Shah SB, ed. Heavy metals in scleractinian corals. Springer, Cham, Switzerland. DOI: https://doi.org/10.1007/978-3-030-73613-2
Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E, 2014. Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Rev Environ Contam Toxicol 232:1-44. DOI: https://doi.org/10.1007/978-3-319-06746-9_1
Şirin M, Bayrak EY, Baltaş H, 2024. Human health risk assessment of heavy metals accumulation in different genders and tissues of whiting fish (Merlangius merlangus euxinus Nordmann, 1840) from Rize, Turkey. J Food Compos Anal 127:105971. DOI: https://doi.org/10.1016/j.jfca.2024.105971
Sun Q, Li Y, Shi L, Hussain R, Mehmood K, Tang Z, Zhang H, 2022. Heavy metals induced mitochondrial dysfunction in animals: molecular mechanism of toxicity. Toxicology 469:153136. DOI: https://doi.org/10.1016/j.tox.2022.153136
Sun X, Deng Y, Fang L, Ni M, Wang X, Zhang T, Chen Y, Cai G, Pan F, 2023. Association of exposure to heavy metal mixtures with systemic immune-inflammation index among US adults in NHANES 2011–2016. Biol Trace Elem Res 202:3005-17. DOI: https://doi.org/10.1007/s12011-023-03901-y
Takahashi T, Shimohata T, 2019. Vascular dysfunction induced by mercury exposure. Int J Mol Sci 20:2435. DOI: https://doi.org/10.3390/ijms20102435
Tao Y, 2019. Progress in chromium research and related diseases. AIP Conf Proc 2154:20071. DOI: https://doi.org/10.1063/1.5125399
Tan QG, Lu S, Chen R, Peng J, 2019. Making acute tests more ecologically relevant: cadmium bioaccumulation and toxicity in an estuarine clam under various salinities modeled in a toxicokinetic-toxicodynamic framework. Environ Sci Technol 53:2873-80. DOI: https://doi.org/10.1021/acs.est.8b07095
Valappil AV, Mammen A, 2019. Subacute arsenic neuropathy: clinical and electrophysiological observations. J Neurosci Rural Pract 10:529. DOI: https://doi.org/10.1055/s-0039-1695693
Vinanthi Rajalakshmi KS, Liu WC, Balamuralikrishnan B, Meyyazhagan A, Sattanathan G, Pappuswamy M, Joseph KS, Paari KA, Lee JW, 2023. Cadmium as an endocrine disruptor that hinders the reproductive and developmental pathways in freshwater fish: a review. Fishes 8:589. DOI: https://doi.org/10.3390/fishes8120589
Waisberg M, Joseph P, Hale B, Beyersmann D, 2003. Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95-117. DOI: https://doi.org/10.1016/S0300-483X(03)00305-6
Wang G, Fang L, Chen Y, Ma Y, Zhao H, Wu Y, Xu S, Cai G, Pan F, 2023. Association between exposure to mixture of heavy metals and hyperlipidemia risk among U.S. adults: a cross-sectional study. Chemosphere 344:140334. DOI: https://doi.org/10.1016/j.chemosphere.2023.140334
Wang Y, Zhang H, Tang P, Jiao B, Chen Y, Liu S, Yi M & Dai Y. 2024. Association between blood metals mixture and chronic kidney disease in adults: NHANES 2013-2016. J Trace Elem Med Biol, 83:127395. doi: 10.1016/j.jtemb.2024.127395. DOI: https://doi.org/10.1016/j.jtemb.2024.127395
Wei R, Wei P, Yuan H, Yi X, Aschner M, Jiang Y, Li S, 2024. Inflammation in Metal-Induced Neurological Disorders and Neurodegenerative Diseases. Biol Trace Elem Res 2024;202:4459-81. DOI: https://doi.org/10.1007/s12011-023-04041-z
WHO, 2022. Guidelines for drinking-water quality. Available from: https://iris.who.int/bitstream/handle/10665/352532/9789240045064-eng.pdf.
Xie S, Wang L, Xu Y, Lin D, Sun Y, Zheng S, 2020. Performance and mechanisms of immobilization remediation for Cd contaminated water and soil by hydroxy ferric combined acid-base modified sepiolite (HyFe/ABsep). Sci Total Environ 740:140009. DOI: https://doi.org/10.1016/j.scitotenv.2020.140009
Xu W, Park SK, Gruninger SE, Charles S, Franzblau A, Basu N, Goodrich JM. 2023. Associations between mercury exposure with blood pressure and lipid levels: a cross-sectional study of dental professionals. Environ Res 220:115229. DOI: https://doi.org/10.1016/j.envres.2023.115229
Yang AM, Lo K, Zheng TZ, Yang JL, Bai YN, Feng YQ, Cheng N, Liu SM, 2020. Environmental heavy metals and cardiovascular diseases: Status and future direction. Chronic Dis Transl Med 6:251-9. DOI: https://doi.org/10.1016/j.cdtm.2020.02.005
Zamora-Ledezma C, Negrete-Bolagay D, Figueroa F, Zamora-Ledezma E, Ni M, Alexis F, Guerrero VH, 2021. Heavy metal water pollution: a fresh look about hazards, novel and conventional remediation methods. Environ Technol Innov 22:101504. DOI: https://doi.org/10.1016/j.eti.2021.101504
Zhang H, Yang B, Zhang G, Zhang X, 2016. Sewage sludge as barrier material for heavy metals in waste landfill. Arch Environ Prot 42:52-8. DOI: https://doi.org/10.1515/aep-2016-0020
Zhang Q, Wang C, 2020. Natural and human factors affect the distribution of soil heavy metal pollution: a review. Water Air Soil Pollut 231:350. DOI: https://doi.org/10.1007/s11270-020-04728-2
Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM, 2019. The essential metals for humans: a brief overview. J Inorg Biochem 195:120-9. DOI: https://doi.org/10.1016/j.jinorgbio.2019.03.013

How to Cite

1.
Almashhadany DA, Rashid RF, Altaif KI, Mohammed SH, Mohammed HI, Al-Bader SM. Heavy metal(loid) bioaccumulation in fish and its implications for human health. Ital J Food Safety [Internet]. 2024 Dec. 20 [cited 2024 Dec. 23];. Available from: https://www.pagepressjournals.org/ijfs/article/view/12782