Citrus bliss: potassium, sodium, and calcium silicates secrets for post-harvest diseases of fruit defense
Accepted: 14 October 2024
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Biotic stress significantly challenges the global citrus industry. Major post-harvest issues include diseases caused by Penicillium digitatum, Penicillium italicum, Geotrichum citri-aurantii, Alternaria alternata, and Phytophthora citrophthora. The negative impact of chemical fungicides on the environment and health necessitates eco-friendly alternatives. This study examines the effectiveness of sodium, potassium, and calcium silicates against common citrus diseases. In vitro tests evaluated mycelial growth inhibition using silicate concentrations from 0 to 10,000 ppm after 7 days at 25°C. Sodium silicate showed the highest efficacy, completely inhibiting P. digitatum and P. italicum at 2000 ppm. Potassium and calcium silicates achieved 100% inhibition against Penicillium spp. at a concentration of 1%. In vivo tests on Sidi Aissa clementines assessed the preventive and curative effects of 1, 2, and 6% silicate salt solutions. Sodium silicate prevented 41% of brown rot, 72% of sour rot, and 100% of green mold at 6%. Calcium silicate at 6% significantly reduced blue mold and black rot by 32% and 74%, respectively. Sodium silicate was most effective in curative treatments, suggesting its potential as a pre- or post-harvest spray to control P. digitatum, P. italicum, and G. citri-aurantii.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.