Same-day identification and genotypic antibiotic resistance testing of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria from positive blood culture bottles – a proof of principle assessment

Submitted: 27 June 2024
Accepted: 13 September 2024
Published: 3 December 2024
Abstract Views: 34
PDF: 16
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Background and Aims: patients suffering from systemic mycobacterial spread are at high risk of unfavorable clinical outcomes. Rapid microbiological diagnosis, however, is complicated due to the very slow cultural growth of mycobacteria. To facilitate the diagnostic workflow, we assessed a workflow allowing mass spectrometry-based identification and molecular resistance testing of mycobacteria directly from blood culture pellets.

Materials and Methods: for this study, 50 blood cultures spiked with n=10 Mycobacterium tuberculosis (MTC) isolates and n=40 isolates belonging to 12 other species of non-tuberculous mycobacteria (n=13 M. abscessus complex, n=5 M. avium, n=3 M. chimaera, n=5 M. fortuitum, n=5 M. intracellulare, n=2 M. lentiflavum and n=2 M. mucogenicum, n=1 for each one of the species M. elephantis, M. hassiacum, M. marseillense, M. nebraskense and M. parascrofulaceum) were used next to two clinical cases of a disseminated infection in HIV patients.

Results: the application of the MBT Sepsityper® kit allowed the correct species level identification by applying mass spectrometry as well as correct molecular resistance testing results as compared to the diagnostic reference approach applied with mycobacterial culture material.

Conclusions: in conclusion, the results provide a proof-of-principle of the suitability of the assessed potential workflow in order to achieve a shortened time-to-result for the diagnosis of systemic mycobacterial infections. Future studies in high endemicity settings are desirable to assess the clinical applicability and impact of such a shortened workflow.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Al-Mutairi NM, Ahmad S, Mokaddas EPerformance comparison of four methods for detecting multidrug-resistant Mycobacterium tuberculosis strains. Int. J. Tuberc. Lung. Dis. 2011;15:110-15.
Barr DA, Lewis JM, Feasey N, et al. Mycobacterium tuberculosis bloodstream infection prevalence, diagnosis, and mortality risk in seriously ill adults with HIV: a systematic review and meta-analysis of individual patient data. Lancet Infect. Dis. 2020;20:742-52. DOI: https://doi.org/10.1016/S1473-3099(19)30695-4
Cordovana M, Zignoli A, Ambretti S. Rapid Sepsityper in clinical routine: 2 years' successful experience. J. Med. Microbiol. 2020;69:1398-404. DOI: https://doi.org/10.1099/jmm.0.001268
Daley CL, Iaccarino JM, Lange C, et al. Treatment of Nontuberculous Mycobacterial Pulmonary Disease: An Official ATS/ERS/ESCMID/IDSA Clinical Practice Guideline. Clin. Infect. Dis. 2020;71:905-13. DOI: https://doi.org/10.1093/cid/ciaa1125
Drobniewski F, Cooke M, Jordan J, et al. Systematic review, meta-analysis and economic modelling of molecular diagnostic tests for antibiotic resistance in tuberculosis. Health Technol. Assess. 2015;19:1-188. DOI: https://doi.org/10.3310/hta19340
El Helou G, Viola GM, Hachem R, et al. Rapidly growing mycobacterial bloodstream infections. Lancet Infect Dis. 2013;13:166-74. DOI: https://doi.org/10.1016/S1473-3099(12)70316-X
Forbes BA, Hall GS, Miller MB, et al. Practical Guidance for Clinical Microbiology Laboratories: Mycobacteria. Clin. Microbiol. Rev. 2018;31:e00038-17. DOI: https://doi.org/10.1128/CMR.00038-17
Javed H, Bakuła Z, Pleń M, et al. Evaluation of Genotype MTBDRplus and MTBDRsl Assays for Rapid Detection of Drug Resistance in Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in Pakistan. Front. Microbiol. 2018;9:2265. DOI: https://doi.org/10.3389/fmicb.2018.02265
Mather AC, Rivera SF, Butler-W S.M. Comparison of the Bruker Biotyper and Vitek MS Matrix-Assisted Laser Desorption Ionization–Time of Flight Mass Spectrometry Systems for Identification of Mycobacteria Using Simplified Protein Extraction Protocols. J. Clin. Microbiol. 2014;52:130-8. DOI: https://doi.org/10.1128/JCM.01996-13
Morgenthaler NG, Kostrzewa M. Rapid identification of pathogens in positive blood culture of patients with sepsis: review and meta-analysis of the performance of the sepsityper kit. Int. J. Microb. 2015;2015:827416. DOI: https://doi.org/10.1155/2015/827416
Nguyen TNA, Anton-Le Berre V, Bañuls AL, Nguyen TVA. Molecular Diagnosis of Drug-Resistant Tuberculosis; A Literature Review. Front. Microbiol. 2019;10: 794. DOI: https://doi.org/10.3389/fmicb.2019.00794
Pavlinac PB, Lokken EM, Walson JL, et al. Mycobacterium tuberculosis bacteremia in adults and children: a systematic review and meta-analysis. Int. J. Tuberc. Lung. Dis. 2016;20:895-902. DOI: https://doi.org/10.5588/ijtld.15.0773
Ponderand L, Pavese P, Maubon D, et al. Evaluation of Rapid Sepsityper® protocol and specific MBT-Sepsityper module (Bruker Daltonics) for the rapid diagnosis of bacteremia and fungemia by MALDI-TOF-MS. Ann. Clin. Microbiol. Antimicrob. 2020;19:60. DOI: https://doi.org/10.1186/s12941-020-00403-w
Reimer LG. Laboratory detection of mycobacteremia. Clin. Lab. Med. 1994;14:99-105. DOI: https://doi.org/10.1016/S0272-2712(18)30397-4
Rodrigues C. The Expanding Repertoire of Non-Tuberculous Mycobacterial Infections: Focus on Rapidly Growing Mycobacteria Bloodstream Infections. J. Assoc. Physicians India 2015;63:9-10.
Schreiber PW, Sax H. Mycobacterium chimaera infections associated with heater-cooler units in cardiac surgery. Curr. Opin. Infect. Dis. 2017;30:388-94. DOI: https://doi.org/10.1097/QCO.0000000000000385
Schubert S, Weinert K, Wagner C, et al. Novel improved sample preparation for rapid, direct identification from positive blood cultures using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. J. Mol. Diagn. 2011;13;701-6. DOI: https://doi.org/10.1016/j.jmoldx.2011.07.004
Scohy A, Noël A, Boeras A, et al. Evaluation of the Bruker® MBT Sepsityper IVD module for the identification of polymicrobial blood cultures with MALDI-TOF MS. Eur. J. Clin. Microbiol. Infect. Dis. 2018;37:2145-52. DOI: https://doi.org/10.1007/s10096-018-3351-2
Tortoli E, Mariottini A, Mazzarelli G. Evaluation of INNO-LiPA MYCOBACTERIA v2: improved reverse hybridization multiple DNA probe assay for mycobacterial identification. J. Clin. Microbiol. 2003;41:4418-20. DOI: https://doi.org/10.1128/JCM.41.9.4418-4420.2003
Varghese B, Al-Hajoj S. A global update on rare non-tuberculous mycobacteria in humans: epidemiology and emergence. Int. J. Tuberc. Lung. Dis. 2020;24:214-23. DOI: https://doi.org/10.5588/ijtld.19.0194

How to Cite

Camaggi, A., Minisini, R., Tonello, S., Mantovani, M., Caroppo, M. S., Merlo, A., Cordovana, M., Kostrzewa, M., Frickmann, H., & Andreoni, S. (2024). Same-day identification and genotypic antibiotic resistance testing of Mycobacterium tuberculosis complex and non-tuberculous mycobacteria from positive blood culture bottles – a proof of principle assessment. Microbiologia Medica, 39(2). https://doi.org/10.4081/mm.2024.12755