

ANTIFUNGAL SUSCEPTIBILITY OF A COLLECTION OF ASPERGILLUS FUMIGATUS

ISOLATED FROM PATIENTS WITH INVASIVE PULMONARY ASPERGI AND COVID-19 ASSOCIATED ASPERGILLOSIS

Andrea Liberatore¹, Claudio Foschi¹, Donatella Lombardo¹, Giulia Lombardi¹, Simone Ambretti¹

¹Microbiology Unit, DIMEC, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy

BACKGROUND

Invasive pulmonary aspergillosis (IPA) is a life-threatening fungal disease, mainly affecting immunocompromised patients such as those with haematological malignancies, undergoing hematopoietic stem cells and solid organ transplantation, or receiving immunotherapy with/without corticosteroids Nevertheless, IPA can be diagnosed also in immunocompetent subjects, in particular those with influenza or Sars-Cov-2 (COVID-19) infections (CAPA).

The aim of this study was to investigate the *in-vitro* susceptibility to antifungal drugs on a collection of 86 Aspergillus *fumigatus* strains isolated from patients with probable IPA hospitalized at the IRCCS Policlinico Sant'Orsola in Bologna (Italy) between 2018 and 2023. The pattern of susceptibility/resistance to the antifungal drugs performed by a commercial broth microdilution test was subsequently related to the year of A. *fumigatus* isolation and to the positivity for COVID-19.

Moreover, results obtained by the phenotypic assay were compared with real – Time PCR assay, able to detect mutations in

the cyp51A gene.

amphoteric B (MIC = 2 mg/L). The distribution of MIC values stratified by the years of isolation (2018-2020 vs 2021-2023) is displayed in Figure 1. We observed a slight increasing trend of MIC values for all the azole drugs tested. However, strains isolated from COVID-19 positive patients were characterized by higher MIC values for amphoteric in B than those isolated from COVID-19 negative subjects (1.2 ± 0.4 vs 1.0 ± 0.3 , p = 0.05). The molecular test for azole

resistance markers showed a 100%-agreement with the phenotypic assay.

Amphotericin B			5-flucytosin			Fluconazole		
Resistance rate	MIC 50	MIC 90	Resistance rate	MIC 50	MIC 90	Resistance rate	MIC 50	MIC 90
12,8 % (11/86)	1 µL	2 µL	/	4 μL	8 µL	/	>128 µL	>128 µL
Voriconazole			Posaconazole			Itraconazole		
Resistance rate	MIC 50	MIC 90	Resistance rate	MIC 50	MIC 90	Resistance rate	MIC 50	MIC 90
1,2 % (1/86)	0,0625 μL	0,5 µL	0 % (0/86)	0,03 µL	0,0625 μL	1,2 % (1/86)	0,0625 μL	0,25 μL
Micafungin			Anidulafungin			Caspofungin		
Resistance rate	MIC 50	MIC 90	Resistance rate	MIC 50	MIC 90	Resistance rate	MIC 50	MIC 90
/	4 μL	>8 µL	/	1 µL	>8 µL	/	4 µL	8 µL

Figure 1. Distribution of MIC values for AMB B and azoles stratified by the period of A. fumigatus strain isolation. Data are expressed as mean MIC values \pm SD. The period 2018-2020 was compared to the period 2021-2023.

Table 1. Resistance rate, MIC50 and MIC90 for all the antifungal drugs tested on the collection of 86 A. *fumigatus* strains. The resistance rate is reported only for the antifungals for which EUCAST set clinical breakpoints (www.eucast.org).

CONCLUSIONS

