0
0
0
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Advanced glycation end products and human diseases

Authors

Proteins, lipids, and nucleic acids can undergo non-enzymatic glycation and oxidation, leading to the formation of Advanced Glycation End products (AGEs). These chemically stable compounds accumulate in various tissues over time and are strongly implicated in the pathogenesis of several chronic human diseases, including cognitive impairment, diabetes, kidney failure, stroke, cardiac disease, and neurodegenerative disorders. AGEs contribute to the development of these conditions by forming cross-links between proteins, modifying cellular receptors, and inducing oxidative stress, which results in the functional compromise of biological molecules. As such, they are considered a hallmark of metabolic diseases, particularly those associated with aging and poor glycemic control. This review provides a comprehensive analysis of the role of AGEs in the etiology of vascular dysfunction, cognitive decline, renal impairment, cerebrovascular accidents, and cardiovascular disease. Additionally, the underlying cellular mechanisms by which AGEs exert their deleterious effects, including receptor-mediated signaling pathways, inflammation, and oxidative damage, are explored. Finally, the potential therapeutic strategies aimed at inhibiting AGE formation, breaking AGE cross-links, or blocking AGE receptors, highlighting their promise in mitigating AGE-associated pathologies, are discussed.

Sergi D, Boulestin H, Campbell FM, et al. The role of dietary advanced glycation end products in metabolic dysfunction. Mol Nutr Food Res 2021;65:e1900934. DOI: https://doi.org/10.1002/mnfr.201900934
Kuzan A. Toxicity of advanced glycation end products (Review). Biomed Rep 2021;14:1-8 DOI: https://doi.org/10.3892/br.2021.1422
Goldin A, Beckman JA, Schmidt AM, et al. Advanced glycation end products: sparking the development of diabetic vascular injury. Circulation 2006;114:597-605. DOI: https://doi.org/10.1161/CIRCULATIONAHA.106.621854
Zeng C, Li Y, Ma J, et al. Clinical/translational aspects of advanced glycation end-products. Trend End Met 2019;30:959-73. DOI: https://doi.org/10.1016/j.tem.2019.08.005
Ramasamy R, Yan SF, Schmidt AM. Advanced glycation endproducts: from precursors to RAGE: round and round we go. Aminoacids 2012;42:1151-61. DOI: https://doi.org/10.1007/s00726-010-0773-2
Zill H, Bek S, Hofmann T. et al. RAGE-mediated MAPK activation by food-derived AGE and non-AGE products. Biochem Biophys Res Commun 2003;300:311-5. DOI: https://doi.org/10.1016/S0006-291X(02)02856-5
Singh R, Barden A, Mori T et al. Advanced glycation end-products: a review. Diabetologia 2001;44:129-46. DOI: https://doi.org/10.1007/s001250051591
Nie C, Li Y, Qian H, et al. Advanced glycation end products in food and their effects on intestinal tract. Crit Rev Food Sci Nutr 2022;62:3103-15. DOI: https://doi.org/10.1080/10408398.2020.1863904
Tian Z, Chen S, Shi Y, et al. Dietary advanced glycation end products (dAGEs): An insight between modern diet and health. Food Chem 2023;415:135735. DOI: https://doi.org/10.1016/j.foodchem.2023.135735
Huang S, Huang M, Dong X. Advanced glycation end products in meat during processing and storage: A review. Food Rev Int 2021;1-17. DOI: https://doi.org/10.1080/87559129.2021.1936003
Schlueter C, Hauke S, Flohr AM, et al. Tissue-specific expression patterns of the RAGE receptor and its soluble forms—a result of regulated alternative splicing?. BBA-Gene Struc and Exp 2003;1630:1-6. DOI: https://doi.org/10.1016/j.bbaexp.2003.08.008
Du C, Whiddett RO, Buckle I, et al. Advanced glycation end products and inflammation in type 1 diabetes development. Cells 2022;11:3503. DOI: https://doi.org/10.3390/cells11213503
Sharma A, Weber D, Raupbach J. et al. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson's and Alzheimer's disease. Redox Biol 2020;34:101546. DOI: https://doi.org/10.1016/j.redox.2020.101546
Kong Y, Wang F, Wang J, et al. Pathological mechanisms linking diabetes mellitus and Alzheimer's disease: the receptor for advanced glycation end products (RAGE). Front Aging Neurosci 2020;22:217. DOI: https://doi.org/10.3389/fnagi.2020.00217
Birukov A, Cuadrat R, Polemiti E, et al. Advanced glycation end-products, measured as skin autofluorescence, associate with vascular stiffness in diabetic, pre-diabetic and normoglycemic individuals: a cross-sectional study. Cardiovasc Diabetol 2021;20:110. DOI: https://doi.org/10.1186/s12933-021-01296-5
Bettiga A, Fiorio F, Di Marco F, et al. The modern western diet rich in advanced glycation end-products (AGEs): An overview of Its impact on obesity and early progression of renal pathology. Nutrients 2019;11:1748. DOI: https://doi.org/10.3390/nu11081748
Perrone A, Giovino A, Benny J.et al, Advanced glycation end products (AGEs): biochemistry, signaling, analytical methods, and epigenetic effects. Oxid Med Cell Longev 2020; 2020:3818196. DOI: https://doi.org/10.1155/2020/3818196
Tan AL, Forbes JM, Cooper ME, et al. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol 2007;27;130-43. DOI: https://doi.org/10.1016/j.semnephrol.2007.01.006
Kan WC, Hwang JY, Chuang LY, et al. Effect of osthole on advanced glycation end products-induced renal tubular hypertrophy and role of klotho in its mechanism of action. Phytomedicine 2019;53:205-12. DOI: https://doi.org/10.1016/j.phymed.2018.09.030
Song Q, Liu J, Dong L, et al. Novel advances in inhibiting advanced glycation end product formation using natural compounds. Biomed Pharmacother 2021;140:111750. DOI: https://doi.org/10.1016/j.biopha.2021.111750
Dobi A, Bravo SB, Veeren B, et al. Advanced glycation end-products disrupt human endothelial cells redox homeostasis: new insights into reactive oxygen species production. Free Radic Res 2019;53:150-69. DOI: https://doi.org/10.1080/10715762.2018.1529866
Cepas V, Collino M, Mayo JC, et al. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants (Basel) 2020;9:142. DOI: https://doi.org/10.3390/antiox9020142
Peake B, Ghetia M, Gerber C, et al. Role of saturated and unsaturated fatty acids on dicarbonyl-albumin derived advanced glycation end products in vitro. Amino Acids 2022;54:721-32. DOI: https://doi.org/10.1007/s00726-021-03069-6
Spagnuolo L, Della Posta S, Fanali C, et al. Chemical composition of hazelnut skin food waste and protective role against advanced glycation end-products (AGEs) Damage in THP-1-Derived Macrophages. Molecules 2023;28:2680. DOI: https://doi.org/10.3390/molecules28062680
Lin KH, Ali A, Kuo CH, et al. Carboxyl terminus of HSP70-interacting protein attenuates advanced glycation end products-induced cardiac injuries by promoting NFκB proteasomal degradation. J Cell Physiol 2022;237:1888-901. DOI: https://doi.org/10.1002/jcp.30660
Wu XQ, Zhang DD, Wang YN, et al. AGE/RAGE in diabetic kidney disease and ageing kidney. Free Radic Biol Med 2021;171:260-71. DOI: https://doi.org/10.1016/j.freeradbiomed.2021.05.025
Dobi A, Rosanaly S, Devin A, et al. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress. Microvasc Res 2021;133:104098. DOI: https://doi.org/10.1016/j.mvr.2020.104098
Huang X, Liu G, Guo J, et al. The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 2018;14:1483-96. DOI: https://doi.org/10.7150/ijbs.27173
De Luca C, Olefsky JM. Inflammation and insulin resistance. FEBS Lett 2008;582:97-105. DOI: https://doi.org/10.1016/j.febslet.2007.11.057
Yu W, Hu X, Wang M. Pterostilbene inhibited advanced glycation end products (AGEs)-induced oxidative stress and inflammation by regulation of RAGE/MAPK/NF-κB in RAW264. 7 cells. J Func Foods 2018;40:272-9. DOI: https://doi.org/10.1016/j.jff.2017.11.003
Kanarek N, London N, Schueler-Furman O, Ben-Neriah Y. Ubiquitination and degradation of the inhibitors of NF-kappaB. Cold Spring Harb Perspect Biol 2010;2:a000166. DOI: https://doi.org/10.1101/cshperspect.a000166
Du Y, Chi X, Chen Q et al. Investigating the mechanism of banxia xiexin decoction in treating gastritis and diabetes mellitus through network pharmacology and molecular docking analysis. Current Drug Therapy 2024;19:878-97. DOI: https://doi.org/10.2174/0115748855287070240409061220
Jin X, Liu L, Zhou Z et al. Pioglitazone alleviates inflammation in diabetic mice fed a high-fat diet via inhibiting advanced glycation end-product-induced classical macrophage activation. FEBS J 2016;283:2295-308. DOI: https://doi.org/10.1111/febs.13735
Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab 2013;3:94-108.
Bergamini CM, Gambetti S, Dondi A, et al. Oxygen, reactive oxygen species and tissue damage. Cur Pharm Des 2004;10:1611-26. DOI: https://doi.org/10.2174/1381612043384664
Moura FA, Goulart MO, Campos SBG, et al. The close interplay of nitro-oxidative stress, advanced glycation end products and inflammation in inflammatory bowel diseases. Current Medicinal Chemistry 2020;27:2059-76. DOI: https://doi.org/10.2174/0929867325666180904115633
Dariya B, Nagaraju GP. Advanced glycation end products in diabetes, cancer and phytochemical therapy. Drug Discov Today 2020;25:1614-23. DOI: https://doi.org/10.1016/j.drudis.2020.07.003
Stirban A, Gawlowski T, Roden M. Vascular effects of advanced glycation endproducts: clinical effects and molecular mechanisms. Mol Metab 2013;3:94-108. DOI: https://doi.org/10.1016/j.molmet.2013.11.006
Liu H, Yu S, Zhang H, et al. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2. PLoS One 2012;7:e46720.
Kosmopoulos M, Drekolias D, Zavras PD, et al. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta Mol Basis Dis 2019;1865:611-9. DOI: https://doi.org/10.1016/j.bbadis.2019.01.006
Ferroni P, Basili S, Falco A, et al. Platelet activation in type 2 diabetes mellitus. Journal of Thromb Haem 2004;2:1282-91. DOI: https://doi.org/10.1111/j.1538-7836.2004.00836.x
Liu H, Yu S, Zhang H, et al. Angiogenesis impairment in diabetes: role of methylglyoxal-induced receptor for advanced glycation endproducts, autophagy and vascular endothelial growth factor receptor 2. PLoS One 2012;7:e46720. DOI: https://doi.org/10.1371/journal.pone.0046720
Yuan G, Si G, Hou Q, et al. Advanced glycation end products induce proliferation and migration of human aortic smooth muscle cells through PI3K/AKT pathway. Biomed Res Int 2020;2020:8607418. DOI: https://doi.org/10.1155/2020/8607418
Giridharan VV, Generoso JS, Collodel A, et al. Receptor for advanced glycation end products (RAGE) mediates cognitive impairment triggered by pneumococcal meningitis. Neurotherapeutics 2021;18:640-53. DOI: https://doi.org/10.1007/s13311-020-00917-3
Fuentes, Eduardo, Armando R, and Iván P. Role of multiligand/RAGE axis in platelet activation. Thromb Res 2014;308-14. DOI: https://doi.org/10.1016/j.thromres.2013.11.007
An F, Zhao R, Xuan X, et al. Calycosin ameliorates advanced glycation end product-induced neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease. Chem Biol Interac 2022;368:110206. DOI: https://doi.org/10.1016/j.cbi.2022.110206
Chen S, Liu AR, An FM, Yao WB, Gao XD. Amelioration of neurodegenerative changes in cellular and rat models of diabetes-related Alzheimer's disease by exendin-4. Age (Dordr) 2012;34:1211-24. DOI: https://doi.org/10.1007/s11357-011-9303-8
Maheshwari S. AGEs RAGE pathways: Alzheimer's disease. Drug Res (Stuttg) 2023;73:251-4. DOI: https://doi.org/10.1055/a-2008-7948
Han F, Perrin RJ, Wang Q, et al. Neuroinflammation and myelin status in Alzheimer's disease, Parkinson's disease, and normal aging brains: A small sample study. Parkinsons Dis 2019;7975407. DOI: https://doi.org/10.1155/2019/7975407
Ko SY, Lin YP, Lin YS, et al. Advanced glycation end products enhance amyloid precursor protein expression by inducing reactive oxygen species. Free Radic Biol Med 2010;49:474-80. DOI: https://doi.org/10.1016/j.freeradbiomed.2010.05.005
Gerszon J, Rodacka A. Oxidatively modified glyceraldehyde-3-phosphate dehydrogenase in neurodegenerative processes and the role of low molecular weight compounds in counteracting its aggregation and nuclear translocation. Ageing Res Rev 2018;48:21-31. DOI: https://doi.org/10.1016/j.arr.2018.09.003
Chegão A, Vicente Miranda H. Unveiling new secrets in Parkinson's disease: The glycatome. Behav Brain Res 2023;442:114309. DOI: https://doi.org/10.1016/j.bbr.2023.114309
De Iuliis A, Montinaro E, Fatati G, et al. Diabetes mellitus and Parkinson's disease: dangerous liaisons between insulin and dopamine. Neural Regen Res 2022;17:523-33. DOI: https://doi.org/10.4103/1673-5374.320965
Rajendran P, Al-Saeedi FJ, Ammar RB, et al. Geraniol attenuates oxidative stress and neuroinflammation-mediated cognitive impairment in D galactose-induced mouse aging model. Aging (Albany NY) 2024;16:5000-26. DOI: https://doi.org/10.18632/aging.205677
Guerrero E, Vasudevaraju P, Hegde ML, et al. Recent advances in α-synuclein functions, advanced glycation, and toxicity: implications for Parkinson's disease. Mol Neurobiol 2013;47:525-36. DOI: https://doi.org/10.1007/s12035-012-8328-z
Bhattacharya R, Alam MR, Kamal MA, et al. AGE-RAGE axis culminates into multiple pathogenic processes: a central road to neurodegeneration. Front Mol Neurosci 2023;16:1155175. DOI: https://doi.org/10.3389/fnmol.2023.1155175
Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis 2018;109:249-57. DOI: https://doi.org/10.1016/j.nbd.2017.04.004
Francelle L, Mazzulli JR. Neuroinflammation in Gaucher disease, neuronal ceroid lipofuscinosis, and commonalities with Parkinson’s disease. Brain Res 2022;1780:147798. DOI: https://doi.org/10.1016/j.brainres.2022.147798
Liou AK, Clark RS, Henshall DC, Yin XM, Chen J. To die or not to die for neurons in ischemia, traumatic brain injury and epilepsy: a review on the stress-activated signaling pathways and apoptotic pathways. Prog Neurobiol 2003;69:103-42. DOI: https://doi.org/10.1016/S0301-0082(03)00005-4
Steenbeke M, Speeckaert R, Desmedt S, et al. The role of advanced glycation end products and its soluble receptor in kidney diseases. Int J Mol Sci 2022; 23: 3439. DOI: https://doi.org/10.3390/ijms23073439
Kumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy. Biomol Concepts 2016;7:293-309. DOI: https://doi.org/10.1515/bmc-2016-0021
Uesugi N, Sakata N, Horiuchi S, et al. Glycoxidation-modified macrophages and lipid peroxidation products are associated with the progression of human diabetic nephropathy. Am J Kidney Dis 2001;38:1016-25. DOI: https://doi.org/10.1053/ajkd.2001.28591
Morcos M, Sayed AA, Bierhaus A, et al. Activation of tubular epithelial cells in diabetic nephropathy. Diabetes 2002;51:3532-44. DOI: https://doi.org/10.2337/diabetes.51.12.3532
Klein R, Horak K, Lee KE, et al. The relationship of serum soluble receptor for advanced glycation end products (sRAGE) and carboxymethyl lysine (CML) to the incidence of diabetic nephropathy in persons with type 1 diabetes. Diabetes Care 2017;40:e117-e119. DOI: https://doi.org/10.2337/dc17-0421
Tang SC, Chan LY, Leung JC, et al. Differential effects of advanced glycation end-products on renal tubular cell inflammation. Nephrology (Carlton) 2011;16:417-25. DOI: https://doi.org/10.1111/j.1440-1797.2010.01437.x
Froogh G, Pinto JT, Le Y, et al. Chymase-dependent production of angiotensin II: an old enzyme in old hearts. Am J Physiol Heart Circ Physiol 2017;312:H223-H231. DOI: https://doi.org/10.1152/ajpheart.00534.2016
Forrester SJ, Booz GW, Sigmund CD, et al. S. Angiotensin II signal transduction: an update on mechanisms of physiology and pathophysiology. Physiol Rev 2018;98:1627-738. DOI: https://doi.org/10.1152/physrev.00038.2017
Zhang M, Fraser D, Phillips A. ERK, p38, and Smad signaling pathways differentially regulate transforming growth factor-beta1 autoinduction in proximal tubular epithelial cells. Am J Pathol 2006;169:1282-93. DOI: https://doi.org/10.2353/ajpath.2006.050921
Wu W, Wang X, Yu X, et al. Smad3 signatures in renal inflammation and fibrosis. Int J Biol Sci 2022;18:2795-806. DOI: https://doi.org/10.7150/ijbs.71595
Lin CP, Huang PH, Chen CY, et al. Sitagliptin attenuates arterial calcification by downregulating oxidative stress-induced receptor for advanced glycation end products in LDLR knockout mice. Sci Rep 2021;11:17851. DOI: https://doi.org/10.1038/s41598-021-97361-w
Rüster C, Bondeva T, Franke S, et al. Advanced glycation end-products induce cell cycle arrest and hypertrophy in podocytes. Nephrol Dial Transplant 2008;23:2179-91. DOI: https://doi.org/10.1093/ndt/gfn085
Liebisch M, Bondeva T, Franke S, et al. Activation of the receptor for advanced glycation end products induces nuclear inhibitor of protein phosphatase-1 suppression. Kidney Int 2014;86:103-17. DOI: https://doi.org/10.1038/ki.2014.3
Rüster C, Franke S, Wenzel U, et al. Podocytes of AT2 receptor knockout mice are protected from angiotensin II-mediated RAGE induction. Am J Nephrol 2011;34:309-17. DOI: https://doi.org/10.1159/000329321
Rüster C, Bondeva T, Franke S, et al. Angiotensin II upregulates RAGE expression on podocytes: role of AT2 receptors. Am J Nephrol 2009;29:538-50. DOI: https://doi.org/10.1159/000191467
Martens HA, Nienhuis HL, Gross S, et al. Receptor for advanced glycation end products (RAGE) polymorphisms are associated with systemic lupus erythematosus and disease severity in lupus nephritis. Lupus 2012;21:959-68. DOI: https://doi.org/10.1177/0961203312444495
Naz S, Mahmood T, Gupta R, et al. Clinical manifestation of AGE-RAGE axis in neurodegenerative and cognitive impairment disorders. Drug Res (Stuttg) 2023;73:309-317. DOI: https://doi.org/10.1055/a-2004-3591
Reddy VP, Aryal P, Soni P. RAGE inhibitors in neurodegenerative diseases. Biomedicines 2023;11:1131. DOI: https://doi.org/10.3390/biomedicines11041131
Rao NL, Kotian GB, Shetty JK, et al. Receptor for advanced glycation end product, organ crosstalk, and pathomechanism targets for comprehensive molecular therapeutics in diabetic ischemic stroke. Biomolecules 2022;12:1712. DOI: https://doi.org/10.3390/biom12111712
Bhattacharya A, Ashouri R, Fangman M, et al. Soluble receptors affecting stroke outcomes: Potential biomarkers and therapeutic tools. Int J Mol Sci 2021;22:1108. DOI: https://doi.org/10.3390/ijms22031108
Juranek J, Mukherjee K, Kordas B, et al. Role of RAGE in the pathogenesis of neurological disorders. Neurosci Bull 2022;38:1248-1262. DOI: https://doi.org/10.1007/s12264-022-00878-x
Gou X, Ying J, Yue Y, et al. The roles of high mobility group box 1 in cerebral ischemic injury. Front Cell Neurosci 2020;14: 600280. DOI: https://doi.org/10.3389/fncel.2020.600280
Fullerton JL, Cosgrove CC, Rooney RA, et al. Extracellular vesicles and their microRNA cargo in ischaemic stroke. J Physiol 2023;601:4907-921. DOI: https://doi.org/10.1113/JP282050
Filipov A, Fuchshuber H, Kraus J, et al. Measuring of advanced glycation end products in acute stroke care: skin autofluorescence as a predictor of ischemic stroke outcome in patients with diabetes mellitus. J Clin Med 2022;11:1625. DOI: https://doi.org/10.3390/jcm11061625
Shinozuka K, Tajiri N, Ishikawa H, et al. Empathy in stroke rats is modulated by social settings. J Cereb Blood Flow Metab 2020;40:1182-92. DOI: https://doi.org/10.1177/0271678X19867908
Amor S, Peferoen LA, Vogel DY, et al. Inflammation in neurodegenerative diseases--an update. Immunology 2014;142: 151-66. DOI: https://doi.org/10.1111/imm.12233
Fang F, Lue LF, Yan S, et al. RAGE-dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer's disease. FASEB J 2010;24:1043-55. DOI: https://doi.org/10.1096/fj.09-139634
Ramasamy R, Yan SF, Schmidt AM. Receptor for AGE (RAGE): signaling mechanisms in the pathogenesis of diabetes and its complications. Ann N Y Acad Sci 2011;1243:88-102. DOI: https://doi.org/10.1111/j.1749-6632.2011.06320.x
Jandeleit-Dahm K, Watson A, Soro-Paavonen A. The AGE/RAGE axis in diabetes-accelerated atherosclerosis. Clin Exp Pharmacol Physiol 2008;35:329-34. DOI: https://doi.org/10.1111/j.1440-1681.2007.04875.x
McCrimmon RJ, Ryan CM, Frier BM. Diabetes and cognitive dysfunction. The Lancet 2012;379:2291-9. DOI: https://doi.org/10.1016/S0140-6736(12)60360-2
Mazarati A, Maroso M, Iori V, et al. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for advanced glycation end products. Exp Neurol 2011;232:143-8. DOI: https://doi.org/10.1016/j.expneurol.2011.08.012
Ye X, Chopp M, Liu X, et al. Niaspan reduces high-mobility group box 1/receptor for advanced glycation endproducts after stroke in type-1 diabetic rats. Neuroscience 2011;190:339-45. DOI: https://doi.org/10.1016/j.neuroscience.2011.06.004
Liu B, Ye X, Zhao G, et al. Association of RAGE with acute ischemic stroke prognosis in type 2 diabetes. Ir J Med Sci 2021;190:625-630. DOI: https://doi.org/10.1007/s11845-020-02385-2
Richard SA, Sackey M, Su Z, et al. Pivotal neuroinflammatory and therapeutic role of high mobility group box 1 in ischemic stroke. Biosci Rep 2017;37:BSR20171104. DOI: https://doi.org/10.1042/BSR20171104
Li D, Lei C, Zhang S. et al. Blockade of high mobility group box-1 signaling via the receptor for advanced glycation end-products ameliorates inflammatory damage after acute intracerebral hemorrhage. Neurosci Lett 2015;609:109-19. DOI: https://doi.org/10.1016/j.neulet.2015.10.035
Fukami K, Yamagishi S, Okuda S. Role of AGEs-RAGE system in cardiovascular disease. Curr Pharm Des 2014;20:2395-402. DOI: https://doi.org/10.2174/13816128113199990475
Koyama H, Yamamoto H, Nishizawa Y. RAGE and soluble RAGE: potential therapeutic targets for cardiovascular diseases. Mol Med 2007;13:625-35. DOI: https://doi.org/10.2119/2007-00087.Koyama
Park S, Yoon SJ, Tae HJ, et al. RAGE and cardiovascular disease. Front Biosci (Landmark Ed) 2011;16:486-97. DOI: https://doi.org/10.2741/3700
Hartog JW, Voors AA, Bakker SJ, et al. Advanced glycation end-products (AGEs) and heart failure: pathophysiology and clinical implications. Eur J Heart Fail 2007;9:1146-55. DOI: https://doi.org/10.1016/j.ejheart.2007.09.009
Hartog JW, Voors AA, Schalkwijk CG, et al. Clinical and prognostic value of advanced glycation end-products in chronic heart failure. Euro Heart J 2007;28:2879-85. DOI: https://doi.org/10.1093/eurheartj/ehm486
Zhang X, Song Y, Han X, et al. Liquiritin attenuates advanced glycation end products-induced endothelial dysfunction via RAGE/NF-κB pathway in human umbilical vein endothelial cells. Mol Cell Biochem 2013;374:191-201. DOI: https://doi.org/10.1007/s11010-012-1519-0
Yan SF, Ramasamy R, Schmidt AM. The receptor for advanced glycation endproducts (RAGE) and cardiovascular disease. Expert Rev Mol Med 2009;11:e9. DOI: https://doi.org/10.1017/S146239940900101X
Prasad K, Dhar I, Caspar-Bell G. Role of advanced glycation end products and its receptors in the pathogenesis of cigarette smoke-induced cardiovascular disease. Int J Angiol 2015;24:75-80. DOI: https://doi.org/10.1055/s-0034-1396413
Simm A. Protein glycation during aging and in cardiovascular disease. J Proteomics 2013;92:248-59. DOI: https://doi.org/10.1016/j.jprot.2013.05.012
Koyama Y, Takeishi Y, Niizeki T, et al. Soluble receptor for advanced glycation end products (RAGE) is a prognostic factor for heart failure. J Card Fail 2008;14:133-9. DOI: https://doi.org/10.1016/j.cardfail.2007.10.019
Hegab Z, Gibbons S, Neyses L. et al. Role of advanced glycation end products in cardiovascular disease. World J Cardiol 2012;4:90-102. DOI: https://doi.org/10.4330/wjc.v4.i4.90
Campbell DJ, Somaratne JB, Jenkins AJ, et al. Diastolic dysfunction of aging is independent of myocardial structure but associated with plasma advanced glycation end-product levels. PLoS One 2012;7:e49813. DOI: https://doi.org/10.1371/journal.pone.0049813
Smit AJ, Hartog JW, Voors AA, et al. Advanced glycation endproducts in chronic heart failure. Ann N Y Acad Sci 2008;1126:225-30. DOI: https://doi.org/10.1196/annals.1433.038
Raposeiras-Roubín S, Rodiño-Janeiro BK, Grigorian-Shamagian L, et al. Advanced glycation end-products: new markers of renal dysfunction in patients with chronic heart failure. Med Clin (Barc) 2011;136:513-21. DOI: https://doi.org/10.1016/j.medcli.2010.06.030
Miyata T, van Ypersele de Strihou C, Ueda Y, et al. Angiotensin II receptor antagonists and angiotensin-converting enzyme inhibitors lower in vitro the formation of advanced glycation end products: biochemical mechanisms. J Am Soc Nephrol 2002;13:2478-87. DOI: https://doi.org/10.1097/01.ASN.0000032418.67267.F2

How to Cite

Zahra, H. A. (2025). Advanced glycation end products and human diseases. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale. https://doi.org/10.4081/jbr.2025.12656

Similar Articles

You may also start an advanced similarity search for this article.