Evaluation of the biochemical composition and antioxidant activity of preparation based on pigments extracted from the remaining biomass of Arthrospira platensis

Submitted: April 21, 2023
Accepted: September 1, 2023
Published: September 12, 2023
Abstract Views: 1104
PDF: 271
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Biotechnological research is currently focused on obtaining preparations based on natural pigments due to their properties and positive impact on human and animal health. Thus, this study aimed to evaluate the biochemical composition and antioxidant activity of the preparation based on pigments obtained from the remaining biomass of Arthrospira platensis. The obtained results established that the preparation is characterized by a high content of β-carotene, lutein, chlorophyll pigments, and sulfated polysaccharides. Due to its composition, the preparation also possesses high antioxidant activity and the catalase and superoxide dismutase enzymes. These findings highlight the high biological value of the new preparation and the enormous potential for implementation in medicine, the animal husbandry sector, and the food and cosmetic industry.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Wollina U, Voicu C, Gianfaldoni S, et al. Arthrospira platensis - potential in dermatology and beyond. Open Access Maced J Med Sci 2018;6:176-80. DOI: https://doi.org/10.3889/oamjms.2018.033
Seyidoglu N, Galip N, Budak F, et al. The effects of Spirulina platensis (Arthrospira platensis) and Saccharomyces cerevisiae on the distribution and cytokine production of CD4+ and CD8+ T-lymphocytes in rabbits. Austral J Vet Sci 2017;49:185-90. DOI: https://doi.org/10.4067/S0719-81322017000300185
Rudic V. BioR. Biomedical and clinical studies. 1th ed. Chisinau: Elena V.I; 2007.
Rudic V, Cojocari A, Cepoi L, et al. Ficobiotehnologie-cercetare fundamentală și realizări practice [Phycobiotechnology-fundamental research and practical achievements] Chisinau: Elena-V.I 2007:365.
Krinsky NI, Johnson EJ. Carotenoid actions and their relation to health and disease. Mol Aspects Med 2005;26:459-516. DOI: https://doi.org/10.1016/j.mam.2005.10.001
Mohan A, Misra N, Srivastav D, et al. Spirulina the nature’s wonder: a review. Lipids 2019;5:7-12.
Solovchenko A, Chekanov K. Production of carotenoids using microalgae cultivated in photobioreactors. In: Paek K-Y, Murthy HN, Zhong J-J, eds. Production of biomass and bioactive compounds using bioreactor technology. 1th ed. Dordrecht: Springer; 2014. pp.63-91. DOI: https://doi.org/10.1007/978-94-017-9223-3_4
Mo NY. Extraction and determination of total carotenoids in orange heading Chinese cabbages. J Northwest A&F Univ 2014;42:206-14.
Wang L. Research on Dunaliella in β-carotene and sterol [dissertation]. Inner Mongolia: Inner Mongolia University 2014.
Ferruzzi MG, Blakeslee J. Digestion, absorption, and cancer preventative activity of dietary chlorophyll derivatives. Nutr Res 2007;27:1-12. DOI: https://doi.org/10.1016/j.nutres.2006.12.003
Hosikian A, Lim S, Halim R, Danquah MK. Chlorophyll extraction from microalgae: a review on the process engineering aspects. Int J Chem Eng 2010;11-8. DOI: https://doi.org/10.1155/2010/391632
Saadaoui B, Mahmoudi M, Hassen HB, Rhouma M. Potential benefits of probiotics in livestock and poultry production. J Anim Sci Technol 2020;62:331-40.
Chethana S, Nayak CA, Madhusudhan MC, Raghavarao KSMC. Single step aqueous two-phase extraction for downstream processing of C-phycocyanin from Spirulina platensis. J Food Sci Technol 2015;52:2415–21. DOI: https://doi.org/10.1007/s13197-014-1287-9
Iluta I, Rudic V, Chiriac T, et al. Preparatele LevoBioR — unguent, BioR-gel, BioR-loţiune, BioR-capsule: utilizarea lor în chirurgia maxilo-facială (buletin informativ) [lLevoBioR preparations -ointment, gel BioR, lotion BioR, capsules BioR: their use in maxillofacial surgery (newsletter)]. Medicina stomatologică 2012;2:25-7.
Re R, Pellegrini N, Proteggente A, et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 1999;26:1231-7. DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Delia B, Rodriguez A. A guide to carotenoid analysis in food. SILSI Press. International Life Sciences Institute. One Thomas Circle, N.W. Washington, D.C. 2001:64.
Cepoi L. Photosynthetic pigments in Porphyridium cruentum under induced oxidative stress. Akademos 2014;4:116-20.
Ritchie RJ. Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 2008;96:166-17.
Lowry OH, Rosebrough N, Farr A, Randall R. Protein measurement with the Folin phenol reagent. J Biol Chem 1951;193:265-75. DOI: https://doi.org/10.1016/S0021-9258(19)52451-6
Dey P, Harborne J. Methods in plant biochemistry. Carbohydrates. Academic Press 1993;2:529.
Zosim L, Bulimaga V, Rudic V, et al. Innovative process for increasing the content of acid polysaccharides in Spirulina platensis cyanobacterium. Intellectus 2019;1:139-42.
Komina A, Korostileva K, Gyrylova S, et al. Interaction between single nucleotide polymorphism in catalase gene and catalase activity under the conditions of oxidative stress. Physiol Res 2012;61:655-8. DOI: https://doi.org/10.33549/physiolres.932333
Nekrasova GF, Kiseleva IS. Guide to laboratory and practical lessons. UMKD Ecological plant physiology. 2008, 157.
Mathew B; Sankaranaryanan R, Padmanabhan P. Evaluation of chemoprevention of oral cancer with Spirulina fusiformis. Nutr Cancer 1995;24:197-202. DOI: https://doi.org/10.1080/01635589509514407
Babadzhanov AS, Abdusamatoval N, Yusupova FM, et al. Chemical composition of Spirulina platensis cultivated in Uzbekistan. Chem Nat Comp 2004;40:340-4. DOI: https://doi.org/10.1023/B:CONC.0000039141.98247.e8
Romero L, Guevara M, Gómez B, et al. Production of pigments from Arthrospira maxima cultivated in photobioreactors. Revista Colombiana de Biotecnología 2017;19:108. DOI: https://doi.org/10.15446/rev.colomb.biote.v19n1.59671
Christaki E, Bonos P, Florou P. Innovative microalgae pigments as functional ingredients in nutrition. Handbook of marine microalgae: biotechnology advances. Elsevier Inc 2015:223-43. DOI: https://doi.org/10.1016/B978-0-12-800776-1.00014-5
Gouveia L, Batista AP, Sousa I, et al. Microalgae in novel food products. algae: nutrition. Environ Pollut Control 2009:265-300.
Abd El Baky H, Hanaa El Baz KF, El-Latife SA. Induction of sulfated polysaccharides in Spirulina platensis as response to nitrogen concentration and its biological evaluation. J Aquac Res Development 2013;5:206.
Wang Z, Xie J, Shen M, et al. Sulfated modification of polysaccharides: synthesis, characterization and bioactivities. Trends Food Sci Technol 2018;74:147-57. DOI: https://doi.org/10.1016/j.tifs.2018.02.010
Nie X, Shi B, Ding Y, Tao W. Preparation of a chemically sulfated polysaccharide derived from Grifola frondosa and its potential biological activities. Int J Biol Macromol 2006;39:228-33. DOI: https://doi.org/10.1016/j.ijbiomac.2006.03.030
Chaidedgumjorn A, Toyoda H, Woo ER, et al. Effect of (1→3)- and (1→4)-linkages of fully sulfated polysaccharides on their anticoagulant activity. Carbohydr Res 2002;337:925-33. DOI: https://doi.org/10.1016/S0008-6215(02)00078-2
Manlusoc JKT, Hsieh CL, Hsieh CY, et al. Pharmacologic application potentials of sulfated polysaccharide from marine algae. Polymers (Basel) 2019;11:1163. DOI: https://doi.org/10.3390/polym11071163
Lü JM, Lin PH, Yao Q, Chen C. Chemical and molecular mechanisms of antioxidants: experimental approaches and model systems. J Cell Mol Med 2010;14:840-60. DOI: https://doi.org/10.1111/j.1582-4934.2009.00897.x
Upasani CD, Balaraman R. Protective effect of Spirulina on lead induced deleterious changes in the lipid peroxidation and endogenous antioxidants in rats. Phytother Res 2003;17:330-4. DOI: https://doi.org/10.1002/ptr.1135
Pérez-Gálvez A, Viera I, Roca M. Carotenoids and chlorophylls as antioxidants. Antioxidants 2020;9:505. DOI: https://doi.org/10.3390/antiox9060505
Jiménez-Escrig A, Jiménez‐Jiménez I, Sánchez‐Moreno C, Saura‐Calixto F. Evaluation of free radical scavenging of dietary carotenoids by the stable radical 2,2-diphenyl-1-picrylhydrazyl. J Sci Food Agric 2000;80:1686-90. DOI: https://doi.org/10.1002/1097-0010(20000901)80:11<1686::AID-JSFA694>3.0.CO;2-Y
Park WS, Kim HJ, Li M, et al. Two classes of pigments, carotenoids and C-phycocyanin, in Spirulina powder and their antioxidant activities. Molecules 2018;23:2065. DOI: https://doi.org/10.3390/molecules23082065
Ezquerra-Brauer JM, Chan-Higuera JE. Capacidad antioxidante y mecanismo de acción de pigmentos en organismos marinos [Antioxidant capacity and mechanism of action of pigments in marine organisms]. Ciencia UAT 2021;15:186-97. DOI: https://doi.org/10.29059/cienciauat.v15i2.1501

How to Cite

Beșliu, A., Chiselița, O., Chiselița, N., Efremova, N., & Chiriac, T. (2023). Evaluation of the biochemical composition and antioxidant activity of preparation based on pigments extracted from the remaining biomass of <i>Arthrospira platensis</i>. Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale, 96(2). https://doi.org/10.4081/jbr.2023.11425