Biocontrol potential of inflorescence rot of date palm caused by Mauginiella scaettae in the Biskra region (Algeria)

Submitted: February 9, 2023
Accepted: July 14, 2023
Published: September 8, 2023
Abstract Views: 1094
PDF: 237
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Date palm inflorescence rot (known as Khamedj disease) caused by Mauginiella scaettae is a serious problem in most date palm-growing areas of the world, and it causes considerable yield loss. The extensive use of fungicides has resulted in the emergence of fungicide-resistant pathogens, and concerns have been raised over the residual effects on the environment and human health. In this regard, biocontrol agents have been proposed as an alternative to standard fungicides. The aim of our study was to evaluate the biocontrol agent Aspergillus niger against the pathogen M. scaettae. In vitro confrontation tests between M. scaettae and A. niger showed that, after 10 days of incubation, the Petri dish was almost completely covered by the antagonist A. niger, while the pathogen M. scaettae occupied only 0.61±0.015 cm of diameter, which corresponds to a considerable inhibition of the mycelial growth (85.33%). Microscopic observations showed an abundant sporulation of A. niger around the colony of M. scaettae and marked a very important mycoparasitic power. In conclusion, the use of biological control agents is cost-effective, easy to use, and environmentally friendly for the control of Khamedj disease.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Fayyadh MA, Al-Badran BM. Chemical and biological control of date palm inflorescence rot caused by Mauginella scaettae Cav. and Fusarium solani (Mort.). Sacc Basrah J Agric Sci 2012;25.
Abdullah SK, Asensio L, Monfort E, et al. Occurrence in Elx, SE Spain of inflorescence rot disease of date palms caused by Mauginiella scaettae. J Phytopathol 2005;153:417-22. DOI: https://doi.org/10.1111/j.1439-0434.2005.00994.x
Bouhlali EDT, Ben-Amar H, Meziani R, Essarioui A. Development of a fungicide-based management strategy of inflorescence rot disease caused by Mauginiella scaettae Cavar on date palm (Phoenix dactylifera L.) in Morocco. J Saudi Soc Agric Sci 2021;20:3-9. DOI: https://doi.org/10.1016/j.jssas.2021.01.003
Hussain F. Occurrence of date palm inflorescence rot in Iraq. Plant Dis Rept 1958;42:555.
Al-Ani HY, El-Behadili A, Majeed HA, Majeed M. Reaction of date palm cultivars inflorescence rot and persistency and spreading of the disease. Phytopathol Mediterr 1971;10:57-62.
Raiz M, Vivek K, Eiman M, et al. Pink rot of inflorescence a new disease of date palm in Kuwait. Mycol Pathol 2009;7:1-4.
Nishad R, Ahmed TA. Survey and identification of date palm pathogens and indigenous biocontrol agents. Plant Dis 2020;104:2498-508. DOI: https://doi.org/10.1094/PDIS-12-19-2556-RE
Al-Yaseri II, Ismail AZ, Al-Fadhal F. Efficacy of some fungicides to controlling date palm inflorescence rot caused by Mauginiella scaettae Cav. Alkufa J Agr Sci 2011;203-7.
Ons L, Bylemans D, Thevissen K, Cammue BPA. Combining biocontrol agents with chemical fungicides for integrated plant fungal disease control. Microorganisms 2020;8:1930. DOI: https://doi.org/10.3390/microorganisms8121930
Corkley I, Fraaije B, Hawkins N. Fungicide resistance management: maximizing the effective life of plant protection products. Plant Pathol 2022;71:150-69. DOI: https://doi.org/10.1111/ppa.13467
Dennis C, Webster J. Antagonistic properties of species groups of Trichoderma: II. Production of non volatile antibiotics. Trans Br Mycol Soc 1971;57:363-9. DOI: https://doi.org/10.1016/S0007-1536(71)80050-5
Elad Y, Chet I, Katan J, et al. Trichoderma harzianum: A biocontrol agent effective against Sclerotium rolfsii and Rhizoctonia solani. Phytopathol 1980;70:ll9-2l. DOI: https://doi.org/10.1094/Phyto-70-119
Khan IH, Javaid A. In vitro screening of Aspergillus spp. for their biocontrol potential against Macrophomina phaseolina. J Plant Pathol 2021;103:1195-205. DOI: https://doi.org/10.1007/s42161-021-00865-7
Okoth S, De Boevre M, Vidal A, et al. Genetic and toxigenic variability within Aspergillus flavus population isolated from maize in two diverse environments in Kenya. Front Microbiol 2018;9:57. DOI: https://doi.org/10.3389/fmicb.2018.00057
Perrone G, Susca A, Cozzi G, et al. Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol 2007;59:53-66. DOI: https://doi.org/10.3114/sim.2007.59.07
Putri BR, Santoso I, Yasman Y. Antagonistic potential of Bacillus siamensis LDR against Aspergillus niger ABP and ART. In: Mart T, Triyono D, Ivandini TA, eds. Proceedings of the 5th International Symposium on Current Progress in Mathematics and Sciences (ISCPMS2019), Melville, NY: AIP Conference Proceedings 2020:050017. DOI: https://doi.org/10.1063/5.0012314
Rattan SS, Al-Dboon AHA. Notes on fungi associated with Date-Palm I. Sydowia 1980;32:246-73.
Dendouga W, Belhamra M. Screening of halotolerant microfungi isolated from hypersaline soils of Algerian Sahara for production of hydrolytic enzymes. J Biol Res 2022;95:10167 DOI: https://doi.org/10.4081/jbr.2022.10167
Hmouni A, Massoui M, Douira AM. Etude de l'activité antagoniste de Trichoderma spp. et de Gliocladium spp. à l'égard de Botrytis cinerea agent causal de la pourriture grise de la tomate. [Study of antagonistic activity of Trichoderma spp. and Gliocladium spp. against Botrytis cinerea: causal agent of tomato grey mould]. Al Awamia 1999;99:75-92.
Rapilly F. Les techniques de mycologie en pathologie végétale. [Mycological techniques in plant pathology]. Annales des épiphyties 19. Institut National de la Recherche Agronomique, 1968.
Omoifo C, Ikotun T. Inhibition of growth of some plant pathogens by antagonistic microorganisms. J Basic Microbiol 1987;27:515-9. DOI: https://doi.org/10.1002/jobm.3620270911
Camporota P. In vitro antagonism between Trichoderma spp. and Rhizoctonia solani Kühn. Agronomie 1985;5:613-20. DOI: https://doi.org/10.1051/agro:19850707
Bell DK, Wells HD, Markham RC. In vitro antagonism Trichoderma species against six fungal plant pathogens. Phytopathol 1982;72:379-82. DOI: https://doi.org/10.1094/Phyto-72-379
Djerbi M. Diseases of the date palm (Phoenix dactylifera). Regional Project for palm and dates research. Center in the Near East, North Africa, (FAO). Bagdad, Iraq, 1983:106.
Abdullah SK, Lopez-Lorca LV, Jansson HB, et al. Diseases of date palm (Phoenix dactylifera L.). Basrah J Date Palm Res 2010;9:1-43.
Al-Roubaie JJ, Hama NN, Al-Hassan KK. Studies on spread of inflorescence rot and susceptibility of some male palm cultivars to the disease. J Agric Water Resour Res 1987;6:67-79.
Al-Sharidi AM, Al-Shahwan IM. Fungi associated with rot diseases of inflorescence and fruit of date palm in Riyadh region, Saudi Arabia. Arab J Pl Prot 2003;21:84-9.
Ziedan ESH, Farrag ES, Sahab AF. First record and preliminary evaluation of Mucor hiemalis as biocontrol agent on inflorescence brown rot incidence of date palm. Arch Phytopathol Plant Prot 2013;46:617-26. DOI: https://doi.org/10.1080/03235408.2012.749695
Nasraoui B. Main fungal diseases of cereals and legumes in Tunisia. Centre de Publication Universitaire: Tunisia, 2008.
Aydi R, Hassine M, Jabnoun-Khiareddine H, et al. Valorisation des Aspergillus spp. comme agents de lutte biologique contre Pythium et optimisation de leur pouvoir antagoniste in vitro et in vivo. [Valorization of Aspergillus spp. as biological control agents against Pythium and optimization of their antagonistic power in vitro and in vivo]. Tunis J Med Plants Nat Prod 2013;9:70-82.
Dedi J, Otchoumou A, Allou K. Effet de l’interaction in vitro et in vivo entre Aspergillus niger, Mucor sp. et Fusarium oxysporum, Fusarium solani, Phoma sp., Penicillium sp., Trichoderma sp. [Effect of in vitro and in vivo interaction between Aspergillus niger, Mucor sp. and Fusarium oxysporum, Fusarium solani, Phoma sp., Penicillium sp., Trichoderma sp.]. Afrique Science 2010;06:47-53.
Mathivanan N, Prabavarhy VR, Vijayanandra VR. The effect of fungal secondary metabolites on bacterial and fungal pathogens. In: Karlovsky P, ed. Secondary Metabolites in Soil Ecology (SOILBIOL, volume 14). Berlin-Heidelberg: Springer; 2008. pp 129-40. DOI: https://doi.org/10.1007/978-3-540-74543-3_7

How to Cite

Hammia, H., & Bouatrous, Y. (2023). Biocontrol potential of inflorescence rot of date palm caused by <i>Mauginiella scaettae</i> in the Biskra region (Algeria). Journal of Biological Research - Bollettino Della Società Italiana Di Biologia Sperimentale, 96(2). https://doi.org/10.4081/jbr.2023.11249