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Bacillus mojavensis: biofilm formation and biochemical investigation

of its bioactive metabolites
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Abstract

Bacillus mojavensis is an endophytic bacterium which has been
reported to have fungicidal effect against some phytopathogens.
Bioactive secondary metabolites produced by B. mojavensis could
have promising applications in agricultural, food industry and clin-
ical fields. The current research has been conducted to: i) evaluate
the antagonistic effect of B. mojavensis isolate against some phy-
topathogens; ii) characterize chemically the principal bioactive sub-
stances produced by the studied isolate of B. mojavensis using Gas
Chromatography-Mass Spectroscopy (GC-MS); iii) evaluate its
ability to produce a biofilm using ELISA technique. Results showed
that the studied isolate has an antagonistic activity against the
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majority of tested microorganisms. Results showed also that the
studied isolated produced a biofilm in Supplemented Luria-Bertani
Casamino acid (SLB) and Minimal Mineral (MM) medium. The
substantial attached growth in SLB was significantly higher than
MM media. GC-MS analysis revealed the presence of 9 compounds
accounting 87.8% of the total extract, where oxygenated monoter-
penes are the main constituents.

Introduction

Bacillus mojavensis, that Roberts et al.! previously classified
as Bacillus subtilis, was firstly isolated from Mojave desert
(California, USA).? Several studies reported that all strains of this
species have antagonistic activity against different fungi? and it is
considered one of the most important endophytic biocontrol
agents.2* Several endophytes have been used in biological control
and as plant growth promoters.>® The growth promotion mecha-
nisms of several endophytic bacteria include the production of
volatile, diffusible bioactive substances”!? and plant hormones
such as auxin, cytokinin and gibberellin.!-12

Recently, a lot of researchers all over the world have been
interested to reduce the dependency on the synthetic chemicals as
antimicrobial agro-pharmaceutical agents.'> Worldwide, there is a
great interest for the human health, animal welfare and also for
environmental risks correlated to the excess consumption of com-
mercial pesticides.!>1% The use of natural pestiticides extracted
from plant essential oils and obtained from microbial secondary
metabolites is considered one of the most important eco-friendly
strategy for reducing the environmental pollution and preserve the
human health.!3:15

On this regard, the current research is trying to biochemically
characterize the secondary metabolites produced by B. mojavensis
for eventually use them in natural products pharmaceutical indus-
try. Bacon and Hinton!® have reported that B. mojavensis demon-
strated inhibitory effects against Fusarium verticillioides (Sacc.)
by decreasing its toxin accumulation and disease incidence and
also promoted the seedling growth of maize.

Biofilm is an important chemically complex structure, formed
by various bacterial and fungal pathogens for regulating several
biological activities (antibiotic resistance, metabolic processes,
etc.).7"19 The biofilm formation is regulated by quorum sensing
phenomena by different bacterial species.?’ In addition, the
biofilm plays an essential role for better adaptation of bacterial
cells in different conditions.?! Bacterial biofilms are associated
with serious medical microbial infections that are resistant to
antibiotics such Pseudomonas aeruginosa.?2> Most phytopatho-
genic bacteria, such as Xylella fastidiosa, form biofilm in order to
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protect the bacterial aggregation, thus increasing the damages
effects to the host plants.?324

Many Authors have reported that lipopeptides and other related
biosurfactants can induce the biofilm formation.?>-?¢ The investiga-
tion of bacterial biofilms for plant and human diseases give a clear
sight about the bacterial behavior and infection and the possible
way for its control. For this reason one of the main motivations of
the current research is to study the ability of the studied isolate to
form a biofilm and to evaluate the effects of some nutrient media
and other growth conditions on its intensity.

Moyne et al?’ studied the bioactivity of various species of
Bacillus and results showed that they are able to produce remark-
able distribution of three cyclic lipopeptides: surfactin, iturin and
fengycin. Bacon and Hinton? reported that Bacillus spp., in gener-
al, are able to produce lipopeptides biosurfactants such as sur-
factin, pumilacidin, esperin, fengycin and iturin. The lipopeptides
have a potential antifungal activity in managing infections caused
by multidrug resistant and biofilm forming pathogens.* Surfactin is
considered a characteristic feature of Bacillus spp. including B.
mojavensis®® and plays an essential role in interspecies competi-
tion, biofilm formation, cell motility, root colonization and plants
systemic protection.??

In this research, antagonistic bacterial activity of B. mojavensis
was investigated against B. megaterium de Bary, Clavibacter michi-
ganensis Smith (G+ve), Xanthomonas vesicatoria Doidge,
Pseudomonas fluorescens Fligge, Pseudomonas savastanoi (Janse)
Gardan and Pseudomonas syringae pv. phaseolicola Van Hall (G-
ve). Furthermore, antifungal activity has been also evaluated against
Monilinia laxa (Aderh. & Ruhland) Honey, Monilinia fructicola (G.
Winter) Honey, Monilinia fructigena Honey, Fusarium oxysporum
Snyder and Hansen, Rhizoctonia solani J.G. Kithn, Botrytis cinerea
Pers., Aspergillus ochraceus Wilhelm, Penicillium digitatum Sacc.,
Sclerotinia sclerotiorum (Lib.) de Bary., Colletotrichum acutatum
J.H. Simmonds and Cryphonectria parasitica (Murrill) Barr.
Biofilm formation was screened by measuring the absorbance at A
540 nm of bacterial cells adherent to Microplate-96 wells in two dif-
ferent nutrient media: supplemented Luria-Bertani Casamino acid
(SLB) and Minimal Mineral (MM). Finally, the chemical character-
ization of the purified filtrate was carried out using Gas
Chromatography-Mass Spectroscopy (GC-MS).

Materials and Methods

Tested bacteria

The tested bacteria were: B. megaterium, C. michiganensis
(G+ve), X. vesicatoria, P. fluorescens, P. savastanoi and P.
syringae pv. phaseolicola (G-ve). All tested bacteria were cultured
on agar King B (KB) media and incubated at 30+2°C for 72 h and
stored as pure freeze-dried cultures (-20°C) in the collection of
School of Agricultural, Forestry, Food and Environmental
Sciences (SAFE), Basilicata University, Potenza, Italy.

Tested fungi

The tested fungi were: M. laxa, M. fructicola, M. fructigena, F.
oxysporum, R. solani J.G. Kiihn., B. cinerea, A. ochraceus, P. dig-
itatum, Sclerotinia sclerotiorum, C. acutatum and C. parasitica.
The above-mentioned studied fungi were maintained as pure cul-
tures in the mycotheca of SAFE and re-cultured on Potato
Dextrose Agar (PDA) at 24+2°C.
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Antagonistic bacterial assay

B. mojavensis was evaluated for its antagonistic activity
against target bacteria.?” In particular, single small mass from fresh
culture (24 h) of B. mojavensis were deposited in the centre of Petri
dish containing KB as nutrient media. Successively, suspension of
each tested bacteria (108 CFUmL" ) was applied and, then, all
plates were incubated at 30°C for 24 h. As negative control, for
each treatment, three KB plates without B. mojavensis have been
used. The diameter of inhibition zone was measured and the bacte-
rial inhibition percentage was calculated (Equation 1):

BIP (%) = 100 — [<-=F x 100]

Equation 1

Where BIP: bacterial inhibition percentage; GC: average diam-
eter of bacterial grown in cm (control); GT: average diameter of
inhibition zone in cm (treatments).

Antagonistic fungal assay

Antifungal activity of B. mojavensis was evaluated following
contact-phase method.3! Ten uL of the bacterial suspension was
deposited on a PDA-Petri dish previously inoculated with a fungal
disc (0.5 cm?). All plates were incubated at 22+2°C for 96 h. The
diameter of fungal mycelium growth was measured in mm. Each
treatment was carried out in triplicate. As negative control, for
each treatment, three PDA plates without B. mojavensis have been
used. The growth inhibition percentage (GIP) was calculated
according to Zygadlo et al.3? formula (Equation 2):

GC-GT

GIP (%) = 100 x %5

Equation 2

where GC: average diameter of fungus colony grown on PDA
alone (control); GT: average diameter of fungus colony grown on
PDA containing each treatment.

Biofilm formation assay

Biofilm formation assay has been carried out to reveal the abil-
ity of B. mojavensis to adhere the wells of Microplate-96
(MaxiSorp™ Surface, Denmark) as explained by Conway et al.2
The tested bacteria was cultured on Luria-Bertani (LB) media and
100 pL of bacterial suspension were injected in each well. Two
types of media were employed: i) SLB composed of LB with 0.5%
(w/v) and Casamino Acids, and i) MM [(K;HPO, , 10.5 g;
KH,PO4% , 4.5 g; (NH4)2SOs, 1 g; Na;Cs HsO7(2H,O, 0.5 g;
MgSO, 7H,0, 0.2 g; dextrose, 5 g; agar 16 g I'1)]. Microplate-96
were covered and incubated at 37°C for three different incubation
period (24, 48 and 72 h). The plates were washed after that and
stained with 125 pL of 1% (w/v) crystal violet for 15 min. it was
added after that 200 pL ethanol (95%) to each well to release the
stain. Absorbance of the remaining stain dye was measured at A
540 nm using the Elisa Microplate reader instrument (DAS s.r.l.,
Rome, Italy). This assay was repeated twice with three replicate
per each £SDs.

Gas chromatography and gas chromatography/mass
spectroscopy analyses

Preparations of bacterial cell-free culture filtrate

The studied bacteria were cultured at 30°C in Erlenmeyer
flask-500 mL of MM broth media (150 mL). About 1.5 mL of B.
mojavensis suspension (108 UFC-mL-1) was transferred into the
MM flask and then was putted in a shacked-incubator (180 rpm, 5

days, 24°C).
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Extraction of diffusible secondary metabolites

The bacterial broth was centrifuged at 21.000 g (15 min). The
supernatant was filtered by sterile Millipore (USA) filter 0.22 mm
and subsequently lyophilized using CHRIST ALPHA 1-4 (B.
Braun Biotech International, Germany) and stored at —20°C.
Lyophilized aliquots of 300 mg were suspended in 10 mL sterile
distilled water (SDW) and injected after that into a cartridge
syringe (Strata C18-T) washed with 2 mL of methanol and 2 mL of
SDW. Each cartridge was washed after that with 1 mL SDW and
the purified bioactive substances were recovered by 1 mL of
methanol. The purified filtrate was analyzed by GC and GC-MS
for components identification.

Gas chromatography-flame ionization detector analysis

GC analyses were performed using Perkin-Elmer Sigma-115
gas-chromatograph (PerkinElmer, Waltham, MA, USA) with a data
handling system and a flame ionization detector. The separation was
achieved using a HP-5 MS fused-silica capillary column (30 mx0.25
mm, 0.25 pm film thickness). The operative conditions were as fol-
lows: Column temperature: 40°C, with 5 min initial hold, and then
to 270°C at 2°C/min, 270°C (20 min); injection mode splitless (1 L
of a 1:1000 n-hexane solution). Injector and detector temperatures
were 250 and 290°C, respectively. Analysis was also run by using a
fused silica HP Innowax polyethylene glycol capillary column (50
mx0.20 mm, 0.25 um film thickness). In both cases, helium was
used as carrier gas (1.0 mL/min).

GC-MS analyses were performed on an Agilent 6850 Ser. 11 appa-
ratus (Agilent, Roma, Italy), fitted with a fused silica DB-5 capillary
column (30 mx0.25 mm, 0.33 um film thickness), coupled to an
Agilent Mass Selective Detector MSD 5973 (Agilent); ionization
energy voltage 70 eV; electron multiplier voltage energy 2000 V. Mass
spectra were scanned in the range 40500 amu, scan time 5 scans/s.

The identity of oil components was established from their GC
retention indices, by comparison of their MS spectra with those
reported in literature’33% or those of authentic compounds pur-
chased from Sigma Aldrich, Co., Milan, Italy; available in our lab-
oratories by means of NIST 02 and Wiley 275 libraries.’¢
Component relative concentrations were calculated based on GC
area peaks normalization.

Statistical analysis

The obtained results from biofilm and antagonistic assays were
statistically processed using Statistical Package for the Social
Sciences (SPSS) version 13.0 (Prentice Hall: Chicago, USA,
2004). The analysis of variance one-way ANOVA and Tukey B
Post Hoc multiple comparison tests have been performed with a
probability of P<0.05.

Results and Discussion

Antagonistic bacterial activity

The results of antibacterial assay showed high antagonistic
effect of B. mojavensis strain against X. vesicatoria, P. savastanoi,
P. fluorescens and P. syringae pv. phaseolicola and a moderate
effect against B. megaterium (Figure 1). X. vesicatoria and P.
savastanoi were the highest significant inhibited bacteria and
slightly higher than P. fluorescens and P. syringae pv. phaseolicola
(Figure 1). On the other hand, B. mojavensis did not show any
antagonistic activity against C. michiganensis (Figure 1).

Results demonstrated that tested G-ve bacteria have been
inhibited significantly higher than G+ve ones in contrast to the
general statement indicating that the systemic resistance of G-ve is
more than G+ve ones. The high systemic resistance of G-ve is due
to the structure of the outer cell membrane that composed of two
layers of peptidoglycan and lipopolysaccharides whereas G+ve has
only one peptidoglycan layer.37-3 The obtained results are interest-
ing in this regard for controlling some G-ve phytopathogens. The
enhancement of antagonistic activity of the studied bacterium is
explained by different mechanisms such as the increase of the cell
membrane permeabilization and also the loss of cell ions which
probably lead to the bacterial growth inhibition and hence the com-
plete cell death.

Antagonistic fungal activity

Results demonstrated that B. mojavensis has antagonistic
activity against most tested fungi (Figure 2). In particular, high sig-
nificant antagonistic activity was observed for P. digitatum, M.
laxa, M. fructigena, C. acutatum, C. parasitica and S. sclerotio-
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Figure 1. Bactericidal activity of B. mojavensis against some pathogenic bacteria. Bars with different letters indicate means values sig-
nificantly different at P<0.05 according to Tukey post hoc test. Data are expressed as the mean of three replicates + SDs. B. meg, Bacillus

megateriums C. mich, Clavibacter michiganensis; X. ves, Xanthomonas vesicatoria; P. fluor, Pseud.

ens; P. sava,

as fluor

Pseudomonas savastanoi and P. s. pv. phas, Pseudomonas syringae pv. phaseolicola.
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rum. Moderate antagonistic fungal activity was observed for M.
fructicola, B. cinerea and F. oxysporum. There is no notable inhi-
bition activity against R. solani and A. ochraceus. The moderate
activity against B. cinerea is presumptively due to its resistance
especially in Agar-nutrient media.!4

The potential antagonistic efficacy of the tested bacterium may
be correlated to indirect antagonism of the produced bioactive sub-
stances which stimulate the host resistance response.>® The biological
effects of surfactin have been reported in several studies having an
inhibition effect against some pathogenic fungi, bacteria, mycoplas-
mas and viruses.**#2 On the other hand, the synergetic effect between
two or more of the main chemical constituents of the studied isolate
could have a distinctive role in its antagonistic activity.

The obtained results are promising especially in controlling P
digitatum which is considered one of the most aggressive post-har-
vest pathogen especially on Cifrus species. Post-harvest diseases
are the main reason of the fruit loss following harvesting. P. digi-
tatum is responsible for 90% of citrus fruits lost in post-harvest

press
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causing green rot or mold in citrus fruits leading to severe econom-
ic losses worldwide. 344

Biofilm formation

Results revealed that the tested isolate was able to form a
biofilm in two different nutrient media SLB and MM (Figure 3). In
addition, the biofilm formation ability was also assessed after 24,
48, and 72 h of the incubation at 37°C.

SLB and MM media have been used for evaluating the biofilm
formation based on the bibliographic research which reported that
a rich medium could accelerate the substantial attached growth.?

In particular, results showed a high significant variation of the
biofilm formation between the tested media. The substantial
attached growth of the studied bacterium in case of SLB media was
significantly higher than MM media where the growth in SLB was
ranged between 0.792 to 1.081 nm compared to 0.195 to 0.287 nm
in case of MM (Figure 3). Further investigation showed that there
are low significant differences within SLB media regarding the
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Figure 2. Fungicidal activity of Bacillus mojavensis against some phytopathogenic fungi. Bars with different letters indicate means val-
ues significantly different at P<0.05 according to Tukey post hoc test. Data are expressed as the mean of three replicates + SDs. M. laxa,
Monilinia laxa; M. feola, Monilinia fructicola; M. fgna, Monilinia fructigena; B. cin, Botrytis cinerea; C. acut, Colletotrichum acutatum;
C. paras, Cryphonectria parasitica; F. oxy, Fusarium oxysporums R. sol, Rhizoctonia solani; P. digi, Penicillium digitatums A. ochra,
Aspergillus ochraceus and S. scl, Sclerotinia sclerotiorum.
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Figure 3. Biofilm formation by Bacillus mojavensis at different incubation times. Tested strain was grown in 96-well polypropylene
microtiter dishes in Supplemented Luria-Bertani Casamino acid (SLB) and Minimal Mineral (MM) media. Biofilm formation was
assessed at 24 h (black bars), 48 h (white bars), and 72 h (grey bars). Each bar represents the average for three replicates. Bars with dif-
ferent letters for each nutrient media indicate means values significantly different at P<0.05 according to Tukey post hoc test. Data are
expressed as the mean of three replicates + SDs.
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Table 1. Gas chromatography-mass spectroscopy analysis of metabolites extract from Bacillus mojavensis.

1 2,5-Diethenyl-2-methyl-tetrahydrofuran 6.0 759 916 1,2
2 o-Pinene 6.8 927 939 1,2,3
3 Verbenene 1.1 942 967 1,2
4 trans-Isolimonene 1.1 945 984 1,2
5  &-2-Carene 1.0 997 1002 1,2
6  m-Cymenene 43 1000 1085 1,2
7 cis-Thujone 4.1 1049 1102 1,2,3
8  p-Cymen-8-ol 27.1 1095 1182 1,2
9 3-Thujanol 36.3 1180 1168 1,2
Total 87.8 - - -
Monoterpenes hydrocarbons 14.3 - - -
Oxygenated monoterpenes 67.5 - - -
Other compounds 6.0 - - -

KI, Kovats retention index. *Linear retention index on a HP-5MS column; °Linear retention index on a HP Innowax column; fIdentification method: 1=linear retention index; 2=identification based on the comparison

of mass spectra; 3=co-injection with standard compounds.

incubation time, whereas there is no significant difference within
MM media in relation to the incubation time. Surfactin might play
an important role in regulation of the biofilm formation and other
biological activities.?

On the other hand, the obtained results showed that the biofilm
formation can be induced by modifying the nutrient media compo-
nents and especially in case of the rich media SLB which has
accelerated the growth rate of the studied bacterium and hence a
strong formation of biofilm could be a probable result. As conclu-
sion, the biofilm formation might help B. mojavensis against many
microbial agents, furnish resistance to antibiotics and hence
increasing its antagonizing effect.2’

Gas chromatography/mass spectroscopy analysis

Table 1 shows the chemical composition of B. mojavensis
extract in percent; compounds are listed according to their elution
order on a HP-5MS column. Altogether, 9 compounds were iden-
tified accounting for 87.8% of the total extract. Oxygenated
monoterpenes are the main constituents with p-cymen-8-ol
(27.1%) and 3-thujanol (36.3%). Monoterpene hydrocarbons are
present in lesser amounts, with a-pinene (6.8%) and 2,5-diethenyl-
2-methyl-tetrahydrofuran (6.0%).

In our study the studied isolate produced 3-thujanol (36.3%) as
main constituent by using KB medium which contain some other
nutrient minerals such as dipotassium hydrogen phosphate and
magnesium sulphate heptahydrate. Instead, Youcef-Ali et al.l”
reported that surfactin and iturin were the principal substances in
methanolic extract obtained from the culture supernatant of B. sub-
tilis and B. mojavensis.”

Monoterpenes, in general, are considered as plant secondary
metabolites, but isoprenoids, chemical unit of terpenes, are syn-
thetized also by prokaryotes and are essential for cells principal
functions and to assure their growth and survival.*> Many of com-
pounds (monoterpenes and oxygenated monoterpenes) of the B.
mojavensis extract are present also in plant essential oils and deter-
mine their antimicromicrobial activity against different microor-
ganism.*6

Our results are in agreement with previous studies reported
that terpenoids can be isolated from endophyte cultures.4748
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Moreover it has been reported that B. subtilis, a close relative of B.
mojavensis, produces volatile compounds that play an important
role in activation of plant defence.*® Previous chemical investiga-
tions on B. mojavensis have highlighted the antibacterial effects of
some furan derivatives such as furan, 2- furaldehyde, 2-furfuryl
alcohol, 2-furoic acid and nitrofuran compounds against both
G+ve and G-ve bacteria and less activity against P. aeruginosa.>

Conclusions

The genus Bacillus in recent years has gained a great attention
for its antagonistic activity and production of several diffusible
bioactive metabolites. The potential biological activity of the stud-
ied B. mojavensis might correlate with its ability to produce some
specific lipopeptides biosurfactants and ooxygenated monoter-
penes. The above-mentioned metabolites may play an essential
role in several biological properties of Bacillus species such as
biofilm formation, cell motility, root colonization and plants sys-
temic protection. These metabolites could have also promising
applications in agricultural, food industry and clinical fields.
Further biological characterization assays seem necessary for the
best application of the studied active metabolites on the large scale
in pharmaceutical industry.
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