
Abstract  
Selenium (Se) is an essential trace element of fundamental 

importance for human health. Se is incorporated into selenopro-
teins (SPs) which are endowed with pleiotropic effects including 
antioxidant and anti-inflammatory effects and active production of 
thyroid hormones. It has also been suggested that Se plays a cru-
cial role in the pathogenesis of various human diseases. The ther-
apeutic effects of supplementation with Se have already been 

described in various thyroid diseases. However, there are still con-
flicting results regarding the optimal dose of Se to administer and 
the duration of treatment, efficacy, and safety. The highly benefi-
cial effects of supplementation with Se have been observed in sub-
jects with thyroid disease in the hyperthyroid phase. In line with 
these observations, clinical studies have shown that in patients 
with Basedow’s disease (BD) and autoimmune thyroiditis (AT), 
treatment with a combination of antithyroid drugs and Se restores 
the euthyroid state faster than administration of antithyroid drugs 
alone. However, the efficacy of this therapeutic approach remains 
to be better evaluated.  

 
 

Introduction 
Growing clinical evidence suggests that nutraceuticals may be 

considered effective and preventive therapeutic agents in the treat-
ment of different pathological conditions, including thyroid dis-
eases. Iodine is recognized as the main dietary component which 
is essential for the proper functioning of the thyroid. However, 
other molecules including selenium (Se), l-carnitine, myo-inosi-
tol, melatonin, and resveratrol, appear to play important roles in 
thyroid physiology.1 The thyroid gland contains the highest 
amount of Se per mg of tissue than other organ tissues.2 Se is a 
non-metallic element that can be found in soil and groundwater. It 
enters the food chain through plants’ roots and is taken up by 
aquatic organisms.3 Se is involved in the regulation of many bio-
logical functions and biochemical processes in humans.4 On the 
other hand, Se deficiency has been associated with the develop-
ment of various pathological conditions, including heart diseases,5 
neuromuscular disorders,6 neoplastic diseases,7 male infertility,8 
inflammation9, and other pathological conditions. Se appears to 
play a role in mammalian development,10 immune functions,11 
inhibition of viral gene expression12, and in delaying the progres-
sion of AIDS in HIV-positive patients.13 Moreover, Se has been 
suggested to play an important role in cancer prevention, due to 
the incorporation of this element into proteins.14 Se is a compo-
nent of the amino acid selenocysteine (SeC) and of selenoproteins 
(SPs) which have an antioxidant activity, as regulators of redox 
reactions and as regulators of metabolism. Se may function as a 
cofactor for several important human enzyme systems.15 Se is 
incorporated into polypeptide chains as part of the 21st amino 
acid, SeC. Proteins that contain SeC are called SPs. The key meta-
bolic function of Se has therefore been attributed to its role as 
SeC.16 The role of Se was elucidated following the discovery of an 
enzyme containing Se, namely glutathione peroxidase (GPx).17 
The most important selenium-containing enzymes belong to the 
GPx family which includes several isoforms.18 

The importance of Se and SPs in health and disease is gaining 
increasing interest,19 and the potential therapeutic effects of Se have 
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been investigated in various diseases such as hemorrhagic pancreati-
tis, cardiovascular diseases, stroke, and severe sepsis.20,21 Several 
studies have also provided evidence of the inhibiting effects of Se on 
the growth of thyroid cancer cells.22,23 Furthermore, altered expres-
sion levels of SPs have been reported to be associated with altered 
levels of thyroid hormones. These findings further support the 
importance of the role of Se in the homeostasis of thyroid hormones 
and its beneficial effects in the ophthalmopathy associated with 
autoimmune thyroiditis (AT), a condition that represents the most 
common extra-thyroid manifestation of thyroid disease.24,25 In line 
with these observations, it has been reported that physiological lev-
els of Se hinder excessive inflammation. These effects are explained 
by the capability of SPs to modulate the immunoregulatory expres-
sion of cytokines and lipid mediators (Figure 1).26 

 
Absorption, metabolism, and physiological effects 
of selenium  

All the inorganic and organic forms of Se are readily absorbed, 
mainly in the lower end of the small intestine, and taken up by the 
liver, where most of the SPs are synthesized. Once produced, SPs are 
then released into the systemic circulation and distributed to several 
organs where, in turn, other types of SPs can be synthesized.  The 
local uptake of Se from the plasma occurs through endocytosis 
mediated by apolipoprotein receptors. In this manner, the liver reg-
ulates the distribution of Se throughout the body through the synthe-
sis of SPs and the metabolism of compounds that will be excreted.27 
The excretion of Se in excess occurs via two metabolic pathways 
both resulting in the production of methylated species. In the pres-
ence of toxic levels of Se, trimethylselenium is mainly produced by 
a methyltransferase, which generates trimethylselenium and 
dimethylselenium, both excreted rapidly, one by the kidney and the 
other by the pulmonary route. Conversely, in the presence of low 
levels of Se selenide is converted into a seleno-sugar, then methylat-
ed and transformed into selen methylene acetylgalactosamide, 
which is excreted only with the urine.28 

Glutathione peroxidase (GPx) and thioredoxin reductase 
(TxR) are the two main seleno-enzymes that foster the production 
of reactive oxygen species (ROS).29 Se deficiency leads to a 
reduced production of SPs, including GPx. This phenomenon is 
responsible for the accumulation of hydrogen peroxide (H2O2) that 
may account for inflammation and tissue disease.30 In addition, 
SPs play a key role in regulating human immune system functions. 
In line with these findings, several reports have shown that Se defi-
ciency is accompanied by dysregulation of both cell-mediated 
immunity and B-cell functions31 (Table 1). 

H2O2 is a product of the inflammatory cascade along with other 
peroxides, such as hydroperoxide-phospholipids.32 

Therefore, these hydroperoxides, which are intermediates of 
cyclooxygenase (COX) and lipoxygenase pathways, are effective-
ly neutralized with a consequent decreased production of pro-

inflammatory prostaglandins (PGs) and leukotrienes.33 Ultimately, 
these effects may minimize further tissue injuries. Selenoprotein P 
(SePP) produced in the liver, is the major circulating form of Se 
and is endowed with high antioxidant activity.34 A confirmation of 
a close link between the thyroid gland and Se is provided by thy-
roperoxidase (TPO), a key enzyme involved in the biosynthesis of 
thyroid hormones. However, the chemical reactions needed for the 
synthesis of thyroid hormones which are mediated by thyroid per-
oxidase, may favor the production of ROS. These effects might be 
dangerous and harmful if the antioxidant defense system is not 
able to protect the thyroid cell from oxidative damage. This intra-
thyroid defense system is largely represented by the selenium-
dependent GPx enzyme. 

 
Glutathione peroxidase  

Glutathione peroxidase (GPx) belongs to a family of enzymes 
with antioxidant activity. Their main biological role is to protect 
the organism from oxidative damage by reducing the toxic effects 
induced by ROS, H2O2, and/or to protect cells from apoptosis and 
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Figure 1. Scheme of the probable mechanism of selenium in 
autoimmune thyroiditis.

Table 1. Some studies on selenium supplementation in patients with Hashimoto’s thyroiditis. 

Reference                                                                                           Number of             Duration of              Daily dose                 Thyroid 
                                                                                                              patients                integration             supplement               antibody 

Gartner, R. et al. J Clin Endocrinol Metab. 2002, 87, 1687-169131                      71                             90 days                 200 μg Na2SeO3               Reduction 
Karanikas, G. et al. Thyroid 2008, 18, 7-12102                                                       36                             90 days                 200 μg Na2SeO3             No reduction 
Nacamulli, D. et al. Clin Endocrinol 2010, 73, 535-53970                                    76                      6 months-1 year             80 μg SeMet                  Reduction 
Anastasilakis, A.D. et al.  Int J Clin Pract 2012, 66, 378-383106                          86                          3-6 months                200 μg SeMet                 Reduction 
SeMet, selenomethionine.
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to modulate the synthesis of thyroglobulin (Tg) and thyroid hor-
mones (T4, T3). There are eight isoforms of this enzyme in mam-
malian cells. However, only five of them contain SeC residues and 
may efficiently catalyze the reduction of H2O2 and lipid hydroper-
oxides by using GSH as a cofactor.35 The SeC residue is oxidized 
by the peroxide with the formation of selenic acid and reduced 
again to selenolate by thiols. The selenolic group of the active site 
of GPx is part of a catalytic triad of SeC, thiamine pyrophosphate, 
and glutamine, which may undergo stabilization and activation by 
the formation of hydrogen bonds.36 

Each GPx isoform is characterized by the amount of Se incor-
porated, which is thought to be related to their biological impor-
tance: GPx2> GPx4> GPx3 = GPx1. Glutathione-peroxidase 1 is 
the enzyme of the GPx family which is most susceptible to the 
variation of Se concentrations in the body and to oxidative stress 
conditions. However, when under stress conditions total protein 
synthesis is reduced, GPx1 appears to recover more quickly in 
terms of functionality than other SPs to preserve cell resources.37 

Glutathione-peroxidase 2 (GPx2) is mainly expressed in the 
gastrointestinal mucosa and esophagus. It protects the intestinal 
epithelium from oxidative stress and ensures intestinal mucosal 
homeostasis. The expression of GPx2 is much more resistant than 
GPx1, following a condition of seleno-deficiency status. Its resist-
ance and position suggest that this selenoprotein can be regarded 
as the first line of defense against oxidative stress caused by the 
ingestion of pro-oxidant molecules.38 Glutathione-peroxidase 3 
(GPx3) is the only extracellular enzyme of this family. The pres-
ence of GPx3 in the plasma accounts for about 15-20% of the total 
Se. GPx3 is mainly expressed in the gastrointestinal tract, lung tis-
sues, male reproductive tissues, and the thyroid gland, where it 
exerts antioxidant activity.  

Glutathione-peroxidase 4 (GPx4) is an intracellular enzyme, 
whose expression and activity have been observed in different tis-
sues, in particular at the endocrine level and in the mitochondria of 
spermatozoa; GPx4 is regulated by hormones. Furthermore, Imai 
et al. and Chabory et al. provided evidence that GPx4 exerts an 
important protective role against oxidative stress in photoreceptor 
cells.39,40 Interestingly, some studies have shown that natural SePP 
dependent Se-transport by auto-antibodies is prevalent in patients 
with thyroid disease and appears to be likely responsible for alter-
ations in Se transport and downregulation of GPx3 biosynthesis. It 
has been also observed that SePP auto-antibodies were prevalent in 
Hashimoto’s thyroiditis (HT) compared to healthy subjects. These 
findings indicate that patients with impaired Se transport could be 
considered at health risk for autoimmune thyroid disease.41 

  
Iodothyronine deiodinase  

Iodothyronine deiodinases represent a family of enzymes, also 
known as deiodinases (D1, D2, D3) (Figure 2).42 Each isoform has 
a different tissue distribution and determines the activation, or 
inactivation, of the thyroid hormones in different organs.42 D1 is 
an integral plasma membrane protein with the greatest distribution 
in the body, mainly in the liver, kidney, and thyroid.42 It converts 
T4 to T3 by deiodinating T4 in position 5. The enzymatic activity 
of D1 is the main source of circulating T3. D1 also possesses 5-
deiodase activity and catalyzes the transformation of T4 into rT3. 
A distinctive peculiarity of D1, compared to other deiodinases, is 
that this isoform can be inhibited by propylthiouracil (PTU). The 
enzyme activity of D1 is stimulated by thyroid hormones. This 
phenomenon may account for its reduced activity in hypothy-
roidism or an increased activity in hyperthyroidism. D1 expression 
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Figure. 2. Deiodinases involved in metabolic pathways leading from prohormone T4 to active hormone T3 and other derivatives. 
Giammanco et al. Int J Mol Sci 2020;21:4140.42
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can be also down-regulated by various cytokines such as inter-
leukin 1 (IL-1), interleukin 6 (IL-6), and tumor necrosis factor-
alpha (TNF-α). D1 also catalyzes the reaction of deiodination in 
positions 3’ and 3, which are important in the catabolism of thyroid 
hormones.  

The D2 isoform is mainly localized in the pituitary gland, cen-
tral nervous system (CNS), brown adipose tissue, and skeletal 
muscle. D2 has only a 5’-deiodase activity and is not susceptible to 
the inhibiting effects of propylthiouracil (PTU).  

On the other hand, D3 is mainly present in the CNS, placenta, 
and skin. It has only a 5-deiodase activity and is the main source 
of circulating rT3. The function of deiodinases is to modulate the 
activity of thyroid hormones in a target organ, through the regula-
tion of the amount of active hormone (T3) synthesized according 
to the needs of the organ. In fact, in physiological conditions, about 
35% of T4 is deiodinated to T3 by D1 or D2 activity, 45% is deio-
dinated into rT3 by D1 or D3 activity while about 10% is secreted 
in the bile as a glucuronate metabolite or sulfate and then excreted 
with feces. The process of sulfation is a key step in the metabolic 
pathways of thyroid hormones as it increases the affinity of the 
substrate for deiodinases and consequently the efficiency of the 
hepatic deiodation processes. The amount of T4 that is deiodated 
to T3 or rT3 depends on the conditions of the organism and is 
influenced by the nutritional status (e.g. hyper- or hypo-alimenta-
tion) and health conditions (well-being, fever, or diseases). This 
explains why a reduction of D1 activity can be observed during ill-
ness and fasting. The function of rT3 in humans is not known even 
though experimental evidence has highlighted the fact that it 
inhibits 5-deiodase activity, thus suggesting its involvement in reg-
ulating the production of thyroid hormones.43 

 
Thioredoxin and thioredoxin reductase 

Thioredoxin (Trx), thioredoxin reductase (TrxR), and nicoti-
namide adenine dinucleotide phosphate (NADPH) are part of the 
thioredoxin system. Trx was identified in 1964 as a hydrogen 
donor for the enzymatic synthesis of cytidine deoxyribonucleoside 
diphosphate by the ribonucleotide reductase from Escherichia coli. 
This protein exerts a wide number of functions in several biologi-
cal processes such as DNA synthesis, defense against oxidative 
stress, and apoptosis or redox signaling in the pathogenesis of 
many diseases.44 

Thioredoxin reductases (TrxR) are homodimeric enzymes 
belonging to the flavoprotein family. Each TrxR monomer contains 
flavin adenine dinucleotide (FAD) as a prosthetic group, a binding 
site for NADPH, and an active site consisting of a disulfide that acts 
on redox reactions. TrxRs specifically reduce oxidized thioredoxins, 
a group of small ubiquitous peptides that can interact with DNA, 
causing alterations in gene transcription, and exert inhibitory effects 
on apoptosis, thus facilitating cell proliferation. These enzymes are 
shown to have oxidation-reductive effects and therefore hinder 
oxidative stress. The importance of this system is demonstrated by 
the shortened lifespan of the Methionine sulfoxide reductase (MsrA) 
gene knockout mice.45 In line with this study, transgenic mice over-
expressing human Trx1 were shown to have a longer lifespan and to 
be protected against oxidative stress-related diseases.46,47 

 
Food sources 

Although Se is distributed in soils all over the world, different 
factors such as soil composition, plant species and physiological 
conditions of the plant, environmental conditions, and agricultural 
practices may markedly influence Se content of vegetables, fruit, 

meat, fish, and water.48 Se content in normal adult subjects may 
undergo wide variations. It has been estimated that about fifteen 
percent of the world’s population is Se-deficient. In some parts of 
the world, including the Middle East, India, China, and some 
European countries such as Finland, there are considerably low 
levels of Se in the soil. This phenomenon may account for the defi-
ciency of Se observed in the population of these countries.49-51 
Conversely, in those countries whose soil is rich in Se a significant 
percentage of the local population who consume locally grown 
food may exhibit signs of Se toxicity.52,53 For instance, lentils 
grown in Canadian soils are extremely rich in Se (425-673 µg 
/kg).54 A wide geographical variation in Se content can be also 
observed between subjects living in different areas of the same 
country. For example, one of these studies reported that Se intake 
in adults in Se-deficient areas and seleniferous areas in China was 
2.6-5.0 and 1338 µg/day, respectively.55 Vegetables such as onions 
and asparagus grown on seleniferous soil can accumulate up to 17 
µg/g of Se. Garlic, cabbages, broccoli, and mustard are also rich in 
Se. Other commonly consumed vegetables and fruits generally 
contain only small amounts, that rarely exceed 10 µg/kg. Brazil 
nuts also have very high concentrations of Se.56,57 On the other 
hand, several studies have reported that the content of Se in fish 
may widely vary in a range of concentrations comprised between 
0.1 and 5.0 mg/kg.58 Some sea fish, mainly those with large size, 
contain high amounts of Se in their body.59,60 

 
Determination of selenium in the body  
and supplementation 

There are several laboratory methods for measuring Se content 
in humans. By these methods, Se can be determined in plasma, 
serum, and also in the kidney and liver, hair and nails, or in 
urines.48 The plasma level of Se reflects the amount of circulating 
SPs and selenoenzymes.61 The Se status of an organism can be also 
indirectly assessed by determining the activity of GPx in erythro-
cytes.48 Furthermore, some authors have described a procedure for 
the determination of Se by atomic absorption spectroscopy (AAS) 
in whole blood, serum, and urine.62 

Several studies have shown that the concentrations of Se in the 
blood of citizens of several European countries are lower than the 
concentrations required for optimal plasma GPx activity in 
humans.11 On the other hand, Se intake in Europe is lower than in 
the United States.63 The highest level of intake was observed in 
individuals consuming a diet rich in whole-grain foods and 
seafood such as crabs, shellfish, and fish.63 Some clinical investi-
gations have reported an increase in free T3 in a cohort of patients 
in response to Se supplements with daily supplementation of 100 
µg of L-selenomethionine.64,65 Conversely, other studies have 
shown the absence of a significant influence of Se on the levels of 
free T3, free T4, and TSH.66,67 In addition, some randomized con-
trolled trials in healthy adults have shown a statistically significant 
decrease in serum T4 after supplementation with Se.68,69 

In this setting, Gärtner et al. indicated that a significant reduc-
tion in the mean concentration of anti-peroxidase antibodies (TPO-
Ab) can be reached following 3 months of supplementation with 
200 µg of oral sodium selenite. The study also reported that 25% 
of patients showed complete normalization of both TPO-Ab con-
centrations and ultrasonographic echogenicity of the thyroid.31 

Nacamulli et al. demonstrated that dietary supplementation 
with physiological doses of Se for up to 12 months was effective 
in reducing both anti-TPO-Ab and anti-thyroglobulin (Tg-Ab) 
autoantibodies 70 (Table 1). In this setting, Combs et al. reported 
that a period of 9 months is required to achieve an increase in plas-
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ma Se concentrations in 28 healthy subjects supplemented with 
200 µg of Se/day as selenomethionine. However, in these subjects, 
Se supplementation did not produce clinically significant changes 
in the concentrations of thyroid hormone. Only in men, there was 
a slight statistically significant increase in T3 concentrations, with-
out any decrease in TSH.66 

Other studies have evaluated the effects of Se supplementation 
on thyroid volume regression in AT. These investigations showed 
that low Se serum concentrations were associated with higher thy-
roid volume and a higher prevalence of thyroid enlargement.71,72 
Moreover, some authors recommend a 6-month course of Se in 
patients with mild Basedow’s orbitopathy although to date there is 
no convincing scientific evidence regarding the optimal duration 
of Se supplementation in Basedow’s Disease (BD).73 Se status in 
healthy subjects should be investigated before or during the period 
of Se integration to integrate in a targeted manner deficiency states 
in subjects with autoimmune thyroid diseases.74 A systematic 
review and meta-analysis of the clinically relevant effects of Se 
supplementation in patients with chronic AT showed no influence 
of Se supplementation on thyroid stimulating hormone, health-
related quality of life, or thyroid ultrasound and in subjects treated 
or not treated with levothyroxine replacement.75,76 

 
Selenium deficiency 

Seleno deficiency appears to be directly associated with two 
endemic diseases, namely, Kashin-Beck disease and Keshan dis-
ease, that are widespread in China and Russia where the soils are 
poor in Se content.78 The first is osteoarthritis characterized by 
atrophy, degeneration, and necrosis of the cartilage tissue, which 
occurs mainly in children and can lead to joint enlargement, short-
ening of the fingers and toes, and in extreme cases, even 
dwarfism.77 The second one is a juvenile endemic multifocal car-
diomyopathy, discovered in the Chinese province of Keshan, 
where the soil is deficient in Se. This pathological condition is 
characterized by cardiac enlargement, abnormalities in the electro-
cardiogram, cardiogenic shock, and congestive heart failure asso-
ciated with multifocal myocardial necrosis.78  

It is well known that Se deficiency does not show clinical signs 
characterized by many disorders. Consequently, this may explain the 
reason why Se deficiency appears in pathological forms, including 
thyroid autoimmunity, which is not related to Se deficiency.79.80 

Se deficiency is mainly caused by a low dietary intake or poor 
intestinal absorption while a genetically inherited Se and SP defi-
ciency is a rare condition.81 On the other hand, subjects with hered-
itary defects in protein 2 binding the insertion sequence of seleno-
cysteine (SBP2), present a syndrome of selenoprotein-related 
defects including abnormal thyroid hormone metabolism.81 

SBP2 is considered a key transaction factor for the co-transla-
tional insertion of SeC into SPs. In subjects with SBP2 deficiency 
due to SBP2 gene mutations the dietary intake of Se is not the lim-
iting factor when regular daily intake of Se is provided.82 Total 
serum Se concentrations in subjects with SPs biosynthesis defects 
respond to selenomethionine supplementation. A recent cross-sec-
tional survey carried out in the Shaanxi Province, China, evi-
denced a higher prevalence of thyroid disease in a county with low 
usual consumption of Se compared to a neighboring county with 
higher consumption of Se.83 

 
Selenium and thyroid ophthalmopathy 

Lower Se serum levels have been observed in patients with thy-
roid disease while in Se-deficient areas a higher incidence of thyroid 

ophthalmopathy has been reported. Low Se levels have also been 
noted in infants born from mothers with thyroid disease.84 

H2O2 is an essential co-substrate for thyroid peroxidase (TPO). 
During the oxidation of inorganic iodine, the number of H2O2 mole-
cules produced is proportional to the intensity of stimulation on TSH 
receptors while GPx and TxR neutralize excesses of H2O2. The 
hyperactivity of the thyroid gland causes a greater production of 
H2O2 and ROS. Therefore, a greater amount of Se is needed to pro-
tect the glandular tissues from damage induced by superoxide. 
Several other agents such as superoxide dismutase, and vitamins C 
and E may also contribute to neutralizing H2O2.85,86 

Basedow’s disease (BD) is the most common cause of thyrotox-
icosis while Hashimoto’s thyroiditis (HT) is the most common cause 
of hypothyroidism: 90% of patients with thyroid ophthalmopathy 
are affected by BD and 10% are affected by HT. These autoimmune 
thyroid diseases are caused by an abnormal immune response to thy-
roid auto-antigens. In this context, a key role is played by T lympho-
cytes when antigen recognition is mediated by cell surface receptors. 
This disrupts tolerance for suppressor T cell deficiency and aberrant 
expression of the D-related (DR) region of the Human Leukocyte 
Antigen (HLA) (HLA-DR), absent in normal thyroid cells.87 

Se exerts a dose-dependent inhibitory effect on the expression of 
interferon-γ-induced thyrocyte HLA-DR molecules. This may 
explain one of the beneficial effects of Se in reducing the severity of 
autoimmune thyroid disease.88,89 The mechanisms responsible for 
the loss of tolerance of T cells towards the thyroid stimulating hor-
mone receptors (TSHR) that trigger autoimmunity in BD are still 
unknown. This pathological condition is associated with an exces-
sive secretion of antibodies to the TSH receptor (TSHR-Ab) by acti-
vated B cells. These antibodies bind to TSHR on thyroid cells and 
fibroblasts of the orbit. This antigen-antibody reaction on thyroid 
cells mimics the action of TSH which stimulates the function of thy-
rocytes with excessive production of thyroid hormones and therefore 
thyrotoxicosis.90 This also stimulates H2O2 production which 
requires a higher SPs quantity to neutralize H2O2 in excess and to 
reduce oxidative stress and thyrocyte injury. In a population-based 
study, Pedersen et al. demonstrated significantly lower serum Se 
concentrations in BD than in normal subjects.91 

Xu et al. in 2011 investigated the effect of Se on the thyroid 
glands of patients subjected to excessive iodine intake. These 
authors concluded that supplementation of Se could alleviate the 
toxic effect of excessive iodine on the thyroid as well.92 

Although thyroid hormone synthesis is compartmentalized in 
the lumen of the follicles and both Dual Oxidase (DUOX) enzymes 
and TPO are located in the apical membrane of thyroid cells, H2O2 
can diffuse freely into the cytoplasm and nucleus, where it can trig-
ger aberrant oxidation and iodination of proteins and lipids thus pro-
moting apoptosis and inducing DNA damage. Therefore, H2O2-
induced tissue damage can release thyroid hormone stored as a col-
loid in the follicle lumen and enter the circulation, worsening the 
severity of hyperthyroidism. In severe Se deficiency, the breakdown 
of peroxide within the thyroid cells is reduced.31 

The nutritional deficiency of Se therefore causes an increase in 
necrosis of thyroid cells and invasion of macrophages and a further 
increase in the levels of thyroid hormones in the blood due to the 
release of stored thyroid hormones.93,94 

Like iodine, Se also affects the size of the thyroid gland. 
Rasmussen et al. showed an inverse relationship between Se serum 
concentration and thyroid gland volume.71 

Se deficiency can also exacerbate the effects of iodine deficien-
cy; a similar effect can be observed in vitamin A or iron deficiency.95  

Basedow’s ophthalmopathy is caused by inflammation of the 
extraocular muscles and orbital adipose tissue. Serum TSHR-Ab is 
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present in 70-100% of patients with BD and 1-2% of normal indi-
viduals.96 

In addition to the thyrocytes, TSH receptors are also expressed 
in fibroblasts and orbital pre-adipocytes. When bound by TSHR-Abs 
they trigger a chronic inflammatory cascade with consequent 
swelling of the orbital tissues as seen in Basedow’s 
ophthalmopathy.97 Thus, the ophthalmic manifestations of BD are 
the result of a close interaction between orbital fibroblasts and T-cell 
lymphocytes; polymorphisms in immunomodulatory genes can alter 
the interaction between T-cells and orbital fibroblasts and influence 
disease susceptibility and progression.98 

Although anti-peroxidase antibodies (TPO-Ab) are more com-
monly associated with HT and TSHR-Ab is more commonly associ-
ated with BD, there is an overlap.99 

TPO-Abs are specific for auto-antigenic TPO and are approxi-
mately 90% of HT, 75% of BD, and 10-20% of nodular goiter or thy-
roid cancer. Additionally, 10-15% of normal individuals may have 
high-level TPO-Ab titers.100  

There is clear evidence that the benefits of Se supplementation 
in patients with AT are more pronounced when administered at an 
early phase.101 Some authors have suggested that the beneficial 
effects of Se supplementation in subjects with AT may vary in rela-
tion to the activity of the disease and the degree of inflammation 
(Table 1).102 

Toulis et al. reported a significant lowering of TPO-Ab titers in 
patients with HT in response to Se supplementation.103 

A blind prospective placebo-controlled study highlighted the 
fact that the mean anti-TPO antibody concentration fell by 49.5% in 
the group receiving a daily dose of 200 µg oral sodium selenite com-
pared with a 10.1% reduction in the control group.93 Another study 
showed a reduction of 36% of TPO-Ab in the group treated with Se. 
An analysis of the sub-groups of patients with TPO-Ab greater than 
1200 UI/mL highlighted a median reduction of 40% in patients treat-
ed with Se when compared to a 10% increase in TPO-Ab in the 
placebo group.31 

Other authors observed a significantly higher response to oral 
sodium selenite in hyperthyroid patients compared to euthyroid or 
hypothyroid patients. A subgroup analysis of these patients revealed 
a reduction of TPO-Ab titer of up to 64.42% in the subclinical hyper-
thyroid group of patients, while the reduction of TPO-Ab titer in the 
euthyroid, hypothyroid, and subclinical hypothyroid groups was still 
significant (41.13%, 47.18% and 42.64%, respectively).93 

Another prospective placebo-controlled study including 132 
patients with autoimmune thyroiditis reported a decreased inflam-
matory activity associated with a decreased quantity of TPO-Ab in 
response to Se supplementation. Furthermore, an inverse correlation 
between antioxidant capacity and TPO-Ab level has been also 
described.104 However, it is still not clear whether Se deficiency 
alone could be responsible for the worsening of thyroid disease. In a 
woman with HT Zagrodzki and Ratajczak observed an increase in 
serum Se by 45%, an increase in plasma GPx3 by 21%, and a 76% 
reduction of TPO-Ab following Se supplementation.105 However, 
other investigations have reported opposite results, since they failed 
to demonstrate a significant benefit of Se supplementation on serum 
levels of thyroid autoantibodies (Table 1).106 On the other hand, 
Bonfig et al. demonstrated that the supplementation of Se in a pop-
ulation of children and adolescents did not cause a reduction of  
TPO-Ab concentrations.107 

The pathogenesis of Basedow’s ophthalmopathy relies on the 
infiltration of inflammatory cells, mainly activated T cells, that pro-
duce cytokines and activate the orbital production of glycosamino-
glycan by fibroblasts.108 A retrospective study of 83 patients with 
BD highlighted higher serum levels of Se in the group of patients in 

remission. These findings indicate a positive effect of Se levels on 
the regression of BD. Furthermore, in the relapsed group the levels 
of anti-thyroid stimulating hormone receptor autoantibodies (TRAb) 
and serum Se values were positively correlated, while a negative 
correlation was observed in the group of patients in remission with 
a significantly low concentration of the levels of TRAb and elevated 
Se levels in serum.109 

In line with these observations, it has been shown that patients 
with BD treated with a mixture of vitamin C, vitamin E, beta-
carotene, and Se in combination with anti-thyroid drugs, achieved 
euthyroidism faster than those treated with anti-thyroid drugs 
alone.110,111 ROS production increases pro-inflammatory cytokine 
expression through the up-regulation of Nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB) activity.112 
Lymphocytes, macrophages, and mainly neutrophils require ROS 
and pro-inflammatory molecules for activation, differentiation, and 
phagocytosis.113 Experimental studies have shown that mice with 
autoimmune thyroiditis receiving Se supplementation had lower 
serum thyroglobulin antibody (TgAb) titers and reduced lymphocyte 
infiltration into the thyroid compared to mice with untreated thy-
roiditis.114 GPx and TxR decrease the formation of ROS and reduce 
H2O2 and lipid hydroperoxides and phospholipids. The key enzymes 
of prostaglandin and leukotriene synthesis require specific concen-
trations of peroxide to be activated. Consequently, GPx plus reduced 
glutathione prevents any metabolic transformation of arachidonate 
by cyclooxygenase, 5-lipoxygenase, and 15-lipoxygenase.17  

 
 

Conclusions 
Selenium is an essential trace element endowed with several 

important protective functions in human health. Se deficiency is a 
key environmental factor that, when associated with genetic vari-
ants, may cause an increase in the incidence of autoimmune thy-
roid diseases, especially in those regions in the world with a defi-
ciency of Se in the soil.115 Se deficiency has been associated with 
several adverse thyroid conditions, including hypothyroidism, sub-
clinical hypothyroidism, goiter, thyroid cancer, HT, and BD.116-118 

Some authors have highlighted, in male mice, the protective 
effects of seleno-L-methionine (Se) against thyroid damage caused 
by cadmium (Cd) administration.119 Cd is an extremely toxic 
heavy metal known to interfere with antioxidant enzymes, energy 
metabolism, gene expression, and cell membranes.120 

SPs have been shown to protect thyroid cells from superoxide-
mediated damage. In addition, these proteins modulate the effects 
of those thyroid auto-antibodies which are responsible for the oph-
thalmic manifestations. Furthermore, SPs are shown to possess 
anti-inflammatory activity, lower hydroperoxides in tissues, and 
inhibit the production of inflammatory prostaglandins and 
leukotrienes. Based on these observations, it has been hypothe-
sized that even a slight Se deficiency may contribute to the devel-
opment and maintenance of autoimmune thyroid diseases.31 
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