The in vivo antioxidant effect of vitamin C on hemogram in Paraquat treated male rats (Rattus norvegicus)

Benjamin Nnamdi Okolonkwo,1 Chukwubuike Udoka Okeke,2 Victor Ibarohokonre4
1Department of Medical Laboratory Sciences, Faculty of Science, Rivers State University of Science and Technology, Nkpou – Orowurukpo, Port-Harcourt, Rivers State; 2Department of Prosthesis and Orthopaedic Technology, School of Health Technology, Federal University of Technology Owerri, Imo State; 4Labdata Diagnostics and Services, Rumuijobi, Obio-Akpor L.G.A. Rivers State, Nigeria

Introduction

Paraquat (PQ), a controversial herbicide, is one of the most used total contact herbicide globally; it is applied around trees in orchards and between crop rows to control broad-leaved and grassy weeds.1 Because PQ has a redox potential of −446 mV, any reducing agent with sufficient energy can donate an electron to the bipyrindium divalent cation (PQ2+), to form a free radical (PQ••), which its oxidation results in the formation of the original PQ2+ and a transfer of the released electron to oxygen which subsequently leads to the formation of toxic superoxides called Reactive Oxygen Species which when in excess escapes the electron transport chain and causes damage to cellular components.2

The hemograms [hemoglobin (Hb), packed cell volume (PCV) and total white blood cells count (T-WBC)] are hematological parameters used in accessing blood functionality in health and diseased state.2 Few of its primary functions are to detect anaemia, polycythaemia, leucocytosis, leucocytopenia, etc. They also contribute in assessing transportation, distribution, regulation and protection of body fluids.3 Toxic substances, such as PQ, through the formation of oxygen free radicals (ROS) results in the destruction of cellular components leading to hemolysis (destruction of red blood cells),4 production failure (by attacking stem cells),5 transportation failure (by chelating iron, other metals and proteins involved in cellular functions),6 regulatory and protective failure (by affecting leucocytes and platelet production).5

Vitamin C, a potent water soluble vitamin, has been shown to function as an antioxidant. It has affinity for many free radicals,7 thereby minimizing the damage caused by oxidative stress. Vitamin C directly scavenges ROS with and without enzyme catalysts and can indirectly scavenging them by recycling other antioxidants (e.g. tocopherol) to the reduced form.5,8 By reacting with activated oxygen more readily than any other aqueous components ascorbate protects critical macromolecules from oxidative damage.8 In cells, vitamin C is maintained in its reduced form by reacting with glutathione, which can be catalyzed by protein disulfide isomerase and glutaredoxins.8,9 In addition to its direct antioxidant effects, vitamin C is also a substrate for the antioxidant enzyme ascorbate peroxidase, a function that is particularly important in stress resistance in plants.10,11 Because of this potent functionality of vitamin C, this study was geared towards assessing the acceptability of vitamin C as an adjunct in treatment and management of Paraquat toxicity cases.

Materials and Methods

Materials

Rats

A total of 96 male Albino rats (Rattus norvegicus), weighing between 180-220g [average body weight (BW) 0.2±0.02 kg], were used for the study. Prior to experimentation, all the animals were allowed two weeks to acclimatize to their environment during which period they all had free access to tap water and were fed with pelleted finisher feed (ad libitum), all with negligible vitamin C content.

Paraquat

The paraquat used was purchased as a liter volume of 20% w/v solution with the trade name Dizmazone (Dizengoff WA. Ltd, Lagos, Nigeria) properly sealed in an opaque plastic container. It was kept at room temperature and during use proper caution was taken to avoid fire, spillage or poisoning.

Vitamin C

Pure vitamin C (1000 mg) caplets from
Mason Natural® Trade name of Mason Vitamins, Inc. (Miami Lakes, FL, USA), were used for the research.

Methods

Two mL of different sub-lethal doses of the toxicant (PQ) was intraperitoneally (ip) administered to the animals, under anaesthetics, in different dosed subgroups – A1, A2 (0.0 g/kg); B1, B2 (0.02 g/kg); C1, C2 (0.04 g/kg) and D1, D2 (0.06 g/kg) – on biweekly basis for 3 months [subgroups A and A2 was given 2 mL of 0.9 N normal saline (ip) in conformity with international standard in checking injection sites reaction]. The subgrouped animals were designated into: i) for non-vitamin C treatment; and ii) for vitamin C treatment, as indicated in Table 1.

Subsequently, vitamin C solution (200 mg/L) was prepared in place of water and were provided to the animals in drinking water bottles with glass sipper tubes for rats in subgroups 2 (A1, B1, C1, and D2), while ordinary drinking water with negligible vitamin c content was provided to the animals in subgroups 1 (A2, B2, C2, and D1) all through the study period (Table 1). The water and vitamin C bottles were refilled at least trice daily irrespective of the volume of water or vitamin c remaining in the in-use bottles. It will be note worthy to state that at month 3, the food and water consumption by the rats were affected by PQ intoxication, mainly the subgroups dosed 0.06g/kg BW without vitamin C treatment (D1).

On monthly intervals, 4 animals per subgroup were selected, anaesthetized with gaseous isoflurane anaesthetic machine, the induction chamber was prefilled with 4% isoflurane and oxygen (0.6 L/min). The rats were placed in the induction chamber and observed for signs of lateral recumbence, steady breathing and no attempt to right itself when the induction chamber is slightly tilted, only then is it anaesthetized enough for transfer to the mask on the rodent breathing circuit. Open the lid of the induction chamber and quickly check for absence of the pedal reflex. If present, 3 mL of blood sample were collected using 23G needle attached to 5 mL syringe and the blood samples collected were decanted into Ethylenediaminetetraacetic acid containers using cardiac puncture procedures. After mixing, the samples were used for the hematological estimations of Hb, PCV and T-WBC using cyanmethemoglobin method, microhematocrit method and improved Neubaur counting chamber method, respectively.

Animal care

We do affirm that in carrying out this research that The Nigerian Institutional and National Guide for the care and use of laboratory animals were followed.

Data computation

The Excel (2007) window’s package and two-way analysis of variance (ANOVA) statistical methods were used for the result analysis, with levels of significance measured at P<0.05 and 0.001 respectively.

Results

The T-WBC counts of the individual subgroups for the 3 months study were presented in Figure 1 above. The results obtained indicated that, from months 1–2, there existed no observable effect by either PQ or vitamin C on T-WBC values. The control and tests subgroups values were similar, with negligible dose and time effects on either the subgroups on PQ alone (B1, C1, and D1) or the subgroups which in addition to PQ insult received vitamin C (A2, B2, C2 and D2). It is either that PQ toxicity does not trigger immune response or that the dose and duration of toxicity was not enough for such effect to be noticeable. Another reason could be that the route of administration of PQ (ip) hinders humoral or passive immune response. At month 3, a somewhat increased difference existed between the control subgroups and the test subgroups which were dose dependent at P<0.05, but the within subgroups comparison indicated no difference between the PQ only treated subgroups (B1, C1, and D1) and the subgroups which in addition to PQ insult received vitamin C (A2, B2, C2 and D2). This supported the summation that further studies with longer dose and time effect needs to be carried out to completely determine what will happen on the T-WBC studied.

The Hb mean values obtained (Figure 2) shows that PQ toxicity actively reduced the Hb levels of the test subgroups (B1, B2, C1, C2, D1, D2) and 0.001 respectively.

Table 1. Treatment chart for the subgroups.

<table>
<thead>
<tr>
<th>Group A: Control group given 0.0 g/kg PQ and divided into two subgroups</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1: subsequently received water and feed</td>
</tr>
<tr>
<td>A2: subsequently received vitamin C solution (1000 mg/L)</td>
</tr>
<tr>
<td>Group B: Test group given 0.02 g/kg PQ and divided into two subgroups</td>
</tr>
<tr>
<td>B1: subsequently received water and feed</td>
</tr>
<tr>
<td>B2: subsequently received vitamin C solution (1000 mg/L)</td>
</tr>
<tr>
<td>Group C: Test group given 0.04 g/kg PQ and divided into two subgroups</td>
</tr>
<tr>
<td>C1: subsequently received water and feed</td>
</tr>
<tr>
<td>C2: subsequently received vitamin C solution (1000 mg/L)</td>
</tr>
<tr>
<td>Group D: Test group given 0.04 g/kg PQ and divided into two subgroups</td>
</tr>
<tr>
<td>D1: subsequently received water and feed</td>
</tr>
<tr>
<td>D2: subsequently received vitamin C solution (1000 mg/L)</td>
</tr>
</tbody>
</table>

Figure 1. The total white blood cells count (T-WBC×10⁴/L) mean values of the different subgroups for the 3 months study period.
and D2) when compared to the control sub-
groups (A1 and A2) at P ≤ 0.05 (month 1) and
P ≤ 0.001 (months 2 and 3). The reduction was
found to be more on the subgroups that
received PQ (ip) only (B1, C1 and D1) than the
subgroups which in-addition to PQ insult
received vitamin C (B2, C2 and D2). We noticed
that the effect was both dose and time depend-
ent and also that there were an existing interac-
tion between the dose effect and the time of
exposure. The within subgroups comparison
showed that the subgroups which in-addition to
PQ insult received vitamin C (B2, C2 and D2) had
a higher Hb values than the subgroups that
received PQ (ip) only (B1, C1 and D1), indicat-
ing that vitamin c improved their Hb level even
with the dose and time of exposure effects.

The PCV mean values obtained in Figure 3
also followed the same pattern with that of Hb
in Figure 2. Reduction in the volume of the red
cells of test subgroups (B1, B2, C1, C2, D1
and D2) from months 1 to 3 as compared to that
of the control subgroups (A1 and A2) within
the same period of time signifies that PQ toxicity
actively affected the red cells number and func-
tionality through hemolysis, membrane
enzyme disruption, etc. Also we observed that
these effects were less in vitamin c treated
subgroups than the subgroups on PQ insult
only indicating that vitamin C has a life saving
effect on cells that were placed under toxic
insult. The data obtained also showed that
there was an interaction between dose of PQ
given and the time of exposure. The higher the
dose given and the time of exposure the more
the PCV mean values were reduced.

Discussion

PQ is a well known herbicide that has been
extensively used for the defoliation of weeds in
farmland, recreational, public and industrial
sites. Its toxicity effect is initiated by its abili-
ty to form ROS causing disruption of cell mem-
brane functionality and possibly cell death.
Vitamin c has been shown to scavenge these
ROS with or without enzyme catalysis thereby
restoring cell functionality.

In this study, we investigated the ameliora-
tive effect of vitamin C on PQ toxicity using
hematological cells that are easily affected by
PQ toxicity. We hypothesized that T-WBC and
red blood cells when subjected to toxic insult in
tivo will respond easily, and that subsequent
and continuous administration of vitamin C
will arrest these ROS and restore cell function-
ality in the affected animals. To investigate
this, we choose, PCV, Hb and T-WBC parame-
ters, reason being that they are easily affected
by hemolysis, inflammation, enzyme deactiva-
tion, etc occasioned by toxic insult, and also
they respond quickly to the repairing and
restoring effect of vitamin c on cell membrane,
cytosol and endoplasmic enzyme activities.

The results of the mean T-WBC counts
(Figure 1) indicated that there were no observ-
able changes in the values obtained from
months 1-2 in both the dose and time of expo-
sure effects in the subgroups treated. These
was corroborated by the results from other
studies where the changes observed in T-WBC
of animals under PQ insult treated with vari-
ous antioxidant were not significantly differ-
ent from that of the control animals used. At
month 3, there seemed to be a noticeable
increase in the T-WBC mean values of the test
subgroups when compared to the control, but
the within subgroup comparison showed no
difference between the vitamin c treated sub-
groups and those on PQ only. This made us
suggest that the dose and time of exposure
may not have been enough to conclusively
determine the immune cell toxicity effect.

Hb mean values of the test subgroups
(Figure 2) were significantly lower than the
control subgroups at P ≤ 0.05 (month 1) and
P ≤ 0.001 (months 2 and 3), respectively. These
test subgroups reduction in Hb mean values
was found to be both dose and time of expo-
sure dependent, with the subgroups on vita-
min c having much better Hb values than that

of the test subgroups on PQ treatment only. Also the vitamin c treated control subgroup (A2) has a better improved Hb than the negative control (A1). This interaction between the dose given and the time of exposure effects where supported by the findings that vitamin c confers some level of Protection: Prevention, Interception and Repair, thereby stopping hemolysis and destruction of red cells.10,11 Also the work on Dapsone treatment indicated that vitamin C alongside vitamin E has a protective effect on the erythrocyte against haemolysis caused by dapsone in patient with dermatitis herpetiformis.21

Similarly, the PCV mean values (Figure 3) obtained followed the same pattern with that of the Hb. The reduction in volume were as a result of hemolysis, lipid peroxidation, superoxide formation and elevated nutrient catalysis occasioned by the toxic insult,2 these effects were dose and time dependent,10 occurring at the expense of cellular reducing equivalent, such as nicotinamide adenine dinucleotide phosphate-oxidase, and having consequences in other metabolic processes.22-24 These processes led to the phenotypic observations like loss of weight, inability to feed, hair loss, redness of the eyes and high incidence of labored breathe among test subgroups at higher doses (0.04 and 0.06 g PQ/kg body weight), especially on the subgroups on PQ dose only. This same subgroups recorded high incidence of death among test animals.

Finally, the dosage, time of exposure and their interaction effects observed on the Hb and PCV mean values obtained from test subgroups on PQ only and those that received vitamin c during PQ insult indicates that truly vitamin c has the capability to reduce or limit toxic insult occasioned by PQ or any other xenobiotics. Therefore we suggest that vitamin C treatment should be incorporated into the first-line regimen on cases of toxicity reported in emergency health facilities.

Conclusions

This study has demonstrated the life saving effects of antioxidant (vitamin C) on the chronic toxic insults of PQ administered intraperitoneally to rats.

Exposure of rats to PQ induced massive anaemia and mild leucocytosis that were dose and time dependent, but the subsequent administration of the antioxidant (vitamin C) ameliorated these effects and normalized the hemograms depending on the dose and duration of the treatment. It is evident that vitamin C continuous administration during toxic insult should be one of the first-line treatments given to patients, and that it should be extended even after patient’s recovery to completely repair the cells and tissues that were damaged.

References