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Abstract
Understanding the biology of health and

diseases such as cancer, generating insight
into the triggers and potentiators of disease
and the development of therapeutic
approaches to counter and treat disease
requires detailed interrogation of inherited
genes, and the dynamic positioning of the
transcriptome and proteome. In the last 10
years, significant technological develop-
ments and increases in sample throughput
capabilities have led to a dramatic increase
in the size and complexity of the datasets
that can be generated. A key challenge now
is to develop robust approaches for
analysing and interpreting these, and con-
verting data into biologically- and clinical-
ly-relevant information. Herein, we provide
an overview of approaches for acquiring,
integrating and interpreting complex
datasets generated using multiple omic plat-
forms, with a focus on the field of cancer
research, and highlight key successful data
handling and integration applications.

Introduction
It is well established that insertions and

deletions within the BRCA1 and BRCA2
genes associate with a greatly enhanced risk
for the development of breast cancer.1-3

Altered expression of three breast cancer
associated receptors (ER, PR, HER2) are
also present in breast cancer,4,5 and these
can act as targets for therapeutics such as
Trastuzumab and Trastuzumab emtansine
which bind to HER2.6,7 Another area which
has attracted a great deal of interest in the
recent past relates to microRNA (miRNA),
which are small non-coding RNA
molecules of about 22 nucleotides in
length. An example of this are the miR-141
and miR-375, which have been detected at
significantly greater levels in metastatic
compared to non-metastatic prostate
cancer.8,9 Although investigating the tran-
scriptome can provide some valuable
insight into biology (phenotype), the so-
called machinery driving the biology of the
cell and organism are the proteins (the pro-

teome). The link between transcriptional
activity and the proteome is not necessarily
direct, and so the definition of the biology
and the identification of drivers of disease
and therapeutic resistance require multiple
omics-based approaches.

Current challenges in omics
research

Understanding biological complexity
by generating and analysing low-dimen-
sional datasets is limited. Improving our
understanding of biological systems in
health and disease therefore requires robust
approaches for mining, integrating and
interpreting the large and complex multiple
biological (omics) datasets that can now be
readily generated. These approaches need to
identify indicative changes within the given
data and pinpoint alterations to a subset of
molecules. Although the literature on the
use of big data sets and multi-omics integra-
tion has progressively increased in recent
years, the published approaches vary con-
siderably and are typically individually tai-
lored to each experimental question (Figure
1). Notwithstanding this, the power of these
approaches can be significant, in that they
have the capacity to provide unprecedented
insight into the status of key pathways10 and
underpin the discovery of novel biomarkers
of disease and therapeutic resistance across
a profile of diseases, including cancer.11

Sources of omics data

Genomics
The completion of the first sequenced

human genome12 triggered an era of major
developments in the understanding of the liv-
ing world. The genome represents the build-
ing blocks of a system. The DNA, and more
specifically the nucleotides, code for single
genes, which are translated (via the tran-
scriptome) into functional proteins.
However, not all genetic information is trans-
lated into proteins, and research into the role
of non-coding regions in disease is coming
under greater scrutiny.13 Although non-cod-
ing RNA was initially disregarded as being
data junk, it is now known to provide insight
into a hidden layer of internal signalling
pathways that orchestrate highly specific
nucleic acid recognition and RNA modifica-
tions.14,15 Wang et al. performed a meta-anal-
ysis on the impact of the long non-coding
RNA SPRY4-IT1 on cancer prognosis. The
results highlighted the significant association
between increased levels of SPRY4-IT1
expression and overall survival and the
development of metastasis in patients with
gastric and ovarian cancer.16 Sequencing of

the whole genome or targeted sequencing of
specific genes can highlight alterations, such
as the well-known example of the BRCA117

and BRCA218 genes.

Epigenomics
The Epigenome19 reflects chemical

changes that influence DNA and histones. A
common type of epigenetic modification is
the hypo- or hypermethylation of promotor
regions, which can be caused through the
aberrant behaviour of DNA methyltrans-
ferases. Such alterations have been shown
to be present in many cancers, including
breast cancer20 and cholangiocarcinoma.21

Hypermethylation of the paired-like home-
odomain transcription factor 2 gene has
been shown to be a prognostic indicator of
disease recurrence in prostate cancer.22 The
Epigenome can also be influenced by
altered chromatin regulation resulting from
histone modifications.23 Methylation of his-
tones can alter the response and regulate the
invasiveness of cells, which has been
demonstrated in a study on the protein argi-
nine methyltransferase 5 complexed with
MEP50/WDR77.24
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Transcriptomics
The transcriptome reflects the complete

set of ribonucleic acid transcripts that are
present in a sample at a defined time point.
Although the analysis of the transcriptome
can be focussed solely on the coding RNAs,
the inclusion of non-coding RNAs presents
additional crucial information. Commonly
used gene expression microarrays, and
more recently developed RNA-sequencing
approaches, offer the ability to analyse the
complete transcriptome. Microarrays are
commonly used because of their affordabil-
ity and robustness, however the value of
this approach is limited to an a priori
knowledge of genes.

Microarray analysis was successfully
used for the screening of various biological
specimens, including clinical material.
Lapointe et al.25 used microarray technolo-
gy for the screening of ~26000 genes in
~100 clinically derived samples of prostate
cancer and matching healthy prostate tissue.
This study firstly highlighted the differ-
ences in genetic profiles between healthy
and diseased tissue based on hierarchical
clustering and secondly the identification of
genetic profiles associated with aggressive-
ness. Iorio et al. applied a similar approach
by screening miRNAs of healthy and dis-
eased breast tissue, which enabled the clus-
tering of patients into their respective
groups based on the miRNA profiles. Such
approaches enable the identification of
strongly influential genes for the classifica-
tion and the discovery of potential underly-
ing pathways.

In contrast, RNA-sequencing offers the
advantage of analysing RNA independently
of knowledge relating to the sequence, and
offers a larger dynamic range in the mea-
surement of gene expression. It is also pos-
sible to analyse samples for which no full
genome sequence exists.26 RNA-sequenc-
ing platforms can also be used to focus on
specific elements of the transcriptome, such
as miRNAs, and can enable a closer interro-
gation of actively translated genes by
screening transcripts that are bound to ribo-
somes using ribosome profiling.27 Recent
advances have enabled the analysis of the
transcriptome of single cells,28 which can
improve the understanding through selec-
tion of unique entities within a heteroge-
neous cell population. The development of
RNA-sequencing approaches for the mea-
surement of whole transcriptomes26 enables
users to analyse a sample for approximately
£500. A novel development enables the user
to analyse the transcriptome of single
cells,29 which can be applied in a broad field
of research such as the study of circulating
tumour cells28 or induced pluripotent stem
cells.30 Ren et al.31 used the RNA-seq tech-

nology for the profiling of Chinese prostate
cancer patients and healthy tissue to eluci-
date underlying variations between races. It
enabled them to identify differences in the
profiles of gene-fusions, somatic mutations,
alternative splicing and the expression of
non-coding RNA (ncRNA). Furthermore,
the analysis highlighted differential expres-
sion of ncRNA between the specimens. An
intermediate option to large-scale whole
transcriptome analysis is the nanoString
nCounter™ gene profiling platform.32-34

This platform can simultaneously analyse
up to 800 genes/miRNAs and around 40
proteins within a single sample. In contrast
to conventional gene array-based approach-
es, the nanoString technology does not
require amplification and so the readout of
gene expression is direct and reproducible.
This approach allows the use of lower qual-
ity RNA than that which is required for gene
array, and from sources such as fresh tis-
sue/cells and formalin-fixed, paraffin
embedded (FFPE) tissue. Concentrations
between 25 and 300 ng of RNA, and mate-
rial isolated from a single cell is sufficient
for a complete analysis.35 This approach
therefore provides a valuable analytical
option that delivers results comparable to

matched fresh tissue, which is also suitable
for archived and partially degraded tissue
from FFPE material.33 Cascione et al. used
the nanoString nCounter™ platform for the
integrated analysis of gene and miRNA
expression of triple negative breast cancer
(TBNC), and this resulted in the discovery
of miRNA expression signatures that can
describe phenotypic subtypes within
TNBC.36 A novel promising method for the
targeted study of single cells within a tissue
sample is offered by nanoString’s Digital
Spatial Profiling (DSP) technology. The
DSP technology, which will be officially
released in 2018, enables the quantitative
analysis of up to 800 RNA and protein tar-
gets from specified regions of interest with-
in the analysed tissue on a single cell basis.
Importantly, this approach is non-destruc-
tive for the analysed tissue as it is solely
based on the use of UV-light for the quanti-
tative measurement of the analytes
(https://www.nanostring.com/scientific-
content/technology-overview/digital-spati-
al-profiling-technology).

Proteomics
The proteome represents all proteins

within the system of interest at the time
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Figure 1. Schematic representation of an omics pipeline.
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point of sample collection. Although the
transcriptome can provide information
regarding the potential proteome, there is no
full correlation between the transcriptome
and resulting proteome. Factors such as
half-life of RNA and protein and post-trans-
lational modifications can lead to varia-
tions.37 The proteome is a highly complex
system and the concentrations of the pro-
teins within the proteome span a wide order
of magnitude. Measurement of the pro-
teome in human material such as plasma
presents significant obstacles, as concentra-
tions of proteins can range by up to 10
orders of magnitude and the high concentra-
tion of highly abundant proteins increases
the difficulty in the detection of other, low
abundance proteins.38 It is possible to focus
on individual compartments of the cell by
utilising additional fractionation techniques
prior to proteomic analysis. Ji et al. utilised
the analysis of secreted exosomes from pri-
mary and metastatic colorectal cancer cell
lines for the discovery of differentially
expressed proteins associated with metasta-
sis.39 In recent years, the development of
data-independent mass spectrometry,40 as is
utilised in the SWATH™-based approach
(ABSciex), has enabled the quantitation of
large numbers of proteins from relatively
small amounts of starting material. This
approach enables up to 3500 routine protein
identifications and quantifications within a
short period of acquisition. The develop-
ment of data-independent acquisition in tan-
dem mass spectrometry approaches40 has
represented a milestone in proteome
research and resulted in the discovery and
validation of biomarkers such as the

Apolipoprotein A-IV in ovarian cancer,41

Carbonic Anhydrase 2 in nasopharyngeal
carcinomas,42 N-acylethanolamine Acid
Amidase and Protein Tyrosine Kinase 7 in
aggressive prostate cancer.43 Multiple stud-
ies analysing the proteome of prostate can-
cer in comparison with healthy or benign
tissue have also enabled the discovery of
functional proteins altered in different dis-
ease stages.44,45

Metabolomics
The products of biochemical reactions,

so called metabolites, comprise the
metabolome. Metabolites are small
molecules, normally below 1500 Da, and
alterations in the metabolism of cells and
therefore the metabolites produced, can be
indicative of disease states and/or sur-
vival.46 Budczies et al. analysed the
metabolic profiles of different breast cancer
stages and discovered an altered metabolite
ratio of cytidine-5-monophosphate/pentade-
canoic acid, which could show a strong dis-
criminatory ability between breast cancer
and healthy tissue.47 A further study by the
same group revealed that beta-alanine could
distinguish between ER+ and ER- breast
cancer.48

The most commonly applied ‘omics
approaches and the latest methods/tech-
nologies used in each of these are sum-
marised below and in Table 1.

Multi-omics datasets
Although publically-available datasets

can be a good source of information, most

currently available datasets are derived
from genomic and transcriptomic analyses.
Platforms such as ArrayExpress,49 PRIDE50

and NCBI Gene Expression Omnibus51

offer free to access datasets of published
work. However, matched multiple ‘omic
data from a single study are rare. Matched
data are important as they generate a closer
insight into the relationship between tran-
scriptional and translational activity and
reduce the variability and noise within the
data.

The effective use of data mining and
data integration requires a clear understand-
ing of the study aims. The integration of
transcriptomic and proteomic data can
improve the discovery of biomarkers52 and
identify genes/proteins that are altered in
pathways. The integration of genomic and
transcriptomic data is more suitable for
defining categories of disease risk and has
been extensively applied in the context of
cancer.53,54

A critical factor that can define the qual-
ity of results obtained using any scientific
approach is the choice of sample material to
be used (Table 2). More robust results can
be achieved by generating in-house match-
ing datasets that are derived from the same
starting material which has been subjected
to identical experimental conditions.
Although such an approach decreases vari-
ability within a study, it poses significant
operational challenges, can be more costly
and restricts sample throughput, availability
and dataset size.

Defined and validated cell lines are
commonly used for the discovery of poten-
tial biomarkers11 or drug targets, as their use
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Table 1. Representation of omics sources and approaches and the information they can contribute to a multi-omics study.

Information      Single nucleotide variants         Histone-modifications                            Gene expression                   Protein                                                    Small molecules (<1500 Da)
                            Insertions/deletions                   DNA-methylation                                     Splice variants                        Expression                                             Endogenous metabolome
                            Copy number variations             Chromatin-assembly                               Novel transcripts                   Post-translational modifications       Exogenous metabolome
                            Large structural variants            DNA-protein binding sequences          Small/non-coding RNA          Isoforms
Omics                Genome/Epigenome                                                                                        Transcriptome                        Proteome                                                Metabolome
Methods            Whole-genome sequencing                                                                            NGS-Sequencing                    Mass spectrometry                              Mass spectrometry
                            Exome sequencing                                                                                           Microarray                               Protein arrays                                        NRM spectrometry
                            DNA-microarray                                                                                                PCR-Chip                                 Nanostring analysis                              Chromatography
                            Sanger-sequencing                                                                                           nanoString analysis
                            NGS-sequencing
                            Methylation arrays                       

                                                                  [Translational Medicine Reports 2018; 2:7176]                                                   [page 3]

Table 2. Comparison of factors between cell line and clinical material.

                                                                                                Cell line material                                                Clinical specimens

Availability of sample material                                                                                   Good                                                                                         Limited
Analysis of sample material                                                                                         Easy                                                       Difficult (complexity and biological variation)
Sample numbers for omics approches                                                                     ≤15                                                                                             ≥100
Transferability of results into clinical application               Difficult (additional validation necessary)                                                         Good
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is reasonably cost effective and are easier to
access than control and patient-derived clin-
ical material. Such systems are also highly
controlled and lower sample numbers can
be sufficient for an integrative study. The
main drawback of using cell lines is that
these systems are often highly artificial.
Commonly, cell lines can lose stability after
multiple passages and this can significantly
affect their phenotype and hence response
to biological stimulants. The clinical rele-
vance of cell line-based studies can there-
fore be questionable.

Clinical material is valuable for the
identification and validation of prognostic
and diagnostic biomarkers.52 However, they
have a higher complexity due to the hetero-
geneity of the sample material and disease
state, and so their analysis and the interpre-
tation of the data can be challenging. Major
drawbacks in the use of clinical material
include the limited availability, the effect of
storage on the usability, the generation of
highly complex data, the risk of incomplete
annotation of patient clinical information
(essential for correlating findings to clinical
and pathological outcomes) and the high
sample numbers required due to biological
and disease heterogeneity.

Data processing and mining
The selection process with regards to

the most appropriate sample material and
analysis method is crucial for ensuring opti-
mal outputs. It is important to consider
which data processing approaches will be
applied and what tools are necessary to
most successfully use these approaches.
Most ‘omics platforms provide analysis
tools for the initial processing of the gener-
ated data, such as BaseSpace (https://base-
s p a c e . i l l um in a . c om /home / i n d ex ) ,
Oneomics (https://sciex.com/applications/
life-science-research/oneomics) and
nSolverTM (https://www.nanostring. com/
products/analysis-software/nsolver). The
alignment of generated data to a reference
genome or proteome enables the acquisition
of comprehensive protein and gene expres-
sion and/or fold change data. These plat-
forms also allow the confidence level of the
data subsets to be adjusted in order to more
stringently filter the data obtained. Despite
this, additional in depth bioinformatic
approaches should be considered since
these offer great advantages in their applica-
tion, such as literature-independent data
processing and the recognition of underly-
ing patterns in data with thousands of
inputs. However, some data processing and
mining approaches are demanding on com-
putational power and/or on the number of

replicates analysed and these factors must
be considered at the start of the study
design.

Data must be prepared and normalised
prior to further analysis. In some cases, it
might be useful to transform the data into
identical formats (e.g., log2 values) so that
comparisons across datasets are feasible. It
is important to be aware of the variations
between gene and protein names and a uni-
form labelling system needs to be
applied.55,56 This is followed by a filtering
process, which obtains relevant information
and reduces the dimensionality of the data.
Various data-structuring and data-mining
approaches, which are commonly used for
single omics studies are available, and these
can be adjusted for integrative studies.
Machine-learning approaches can be used
to reduce and filter the data, thereby allow-
ing significant factors within the data and
potential underlying clusters and patterns to
be identified.

Stringent statistical analysis reduces the
data to a discreet selection of significant
drivers and this is more easily achieved
when using data with low noise. Text min-
ing57 can also be used, with the review of
currently published research and the extrac-
tion of relevant information such as key
genes within a pathway enabling further
research. Commercially available reference
mining tools with a curated database, such
as Metacore (https://clarivate.com/prod-
ucts/metacore/) or iPathwayGuide (http://
www.advaitabio.com/ipathwayguide) can
analyse and integrate multi-omics datasets,
thereby highlighting correlations and path-
ways between the data sets. However, these
tools are based on published literature and
are therefore limited to the interrogation of
genes/proteins whose function has been
previously described.

Various literature-independent
approaches that can be supervised or unsu-
pervised in their nature are also available.
Such methods can structure and reduce the
data and filter for significant changes or
dominant patterns within the system.
Although these approaches are commonly
applied to single ‘omics data sets, an inte-
grated approach is also theoretically possi-
ble by combining multiple ‘omics data.58

Unsupervised learning approaches
work without predetermined grouping of
the data. Here, hidden structures or clusters
(co-expressed features) and potential inter-
actions between factors and networks with-
in the dataset are determined. Commonly
used examples are Principal Component
Analysis (PCA)59-61 and hierarchical and k-
means clustering.62 However, it should be
highlighted that these applications do not
directly lead to a feature selection, but result

in the structuring and clustering of the pre-
sented data. These applications can also
function as processing steps before the
application of further data-mining
approaches and for quality control, e.g. the
clustering of classed samples. PCA enables
the reduction of high dimensionality by
maintaining the inherent variability within
the samples.63 It can also reveal grouping
within samples, be used as an internal con-
trol of biological replicates and has success-
fully contributed to the definition of onco-
genic pathway signatures in human
cancers.64

Hierarchical clustering groups together
input factors that show a low distance/high-
er similarity to each other compared to
other given features. Initially, all given fea-
tures represent their own cluster and are
incrementally clustered together by their
commonalities. This continues until all
clusters have been merged and the results
are commonly represented in a dendrogram.
Hou et al. generated copy number variants
and transcriptomic data sets on single cell
populations and applied hierarchical clus-
tering and PCA analysis for the definition of
subpopulations.65 Hierarchical clustering
was also used for the comparison of cDNA
expression in prostate cancer and healthy
tissue, resulting in clear clustering groups of
healthy and diseased material and highlight-
ing subclasses within the prostate tumour
samples.25 The clustering approach using k-
means clustering algorithms differs in the
way the clusters are created in comparison
to hierarchical clustering. The k-means
clustering approach is based on predefined
numbers of desired clusters, termed k. The
algorithm then creates k centroids to which
each feature is assigned. After each assign-
ment, the centroids are updated and the pro-
cess ends after each feature is assigned to a
group.  Shen et al. applied hierarchical and
k-means clustering analysis for the discov-
ery of three distinct subclasses of colon can-
cers based on their genetic and epigenetic
profiles.66 These three groups were con-
firmed through the application of a novel
dataset to k-means clustering using a subset
of genetic and epigenetic markers.67

Supervised learning approaches can be
applied to categorised data, such as healthy
or diseased. These groups can be previously
known through the origin of the data or gen-
erated through unsupervised learning
approaches. The main aim is to accurately
predict the group to which a novel signature
belongs. The algorithm uses a training set
taken from the data to find a solution for the
given question(s) based on presented infor-
mation. This method enables it to correct
the predictions and to improve the output.
The generated results are tested for their
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suitability and adjusted if needed, until
either a previously defined error rate is
reached or the lowest error rate within a pre-
defined set up is selected. Commonly used
examples for supervised learning approach-
es are Support Vector Machines (SVM)68,69

Random Forest (RF)69 and artificial neural
networks (ANN).70,71

SVMs are commonly applied for classi-
fication analyses,72 which are primarily
applied for a two-group classification. The
algorithm generates an optimal hyperplane
to divide the two classes. Examples of pre-
classified input data are presented to the
algorithm, which learns from this, and can
in the future attribute novel samples to the
given categories.73 Carlsson et al. used a
SVM analysis for the classification of
metastatic breast cancer based on serum
profiles.74

RF75 use an algorithm for making clas-
sifications that creates multiple decision
trees based on subsets of the given data.
These trees build together the random
forests, which together produce predictions
and insight into the given data. RF shows
comparable qualities and results when
applied to microarray data compared to
other classification approaches, such as
SVM.76 This method was used for tumour
classification of renal cell carcinoma and
was shown to categorise tissue samples into
clear and non-clear cell tumours.77

ANNs are based on a machine learning
approach that can deal with noisy, non-lin-
ear data and can highlight markers of inter-
est relating to the underlying question with-
in a given sample set.78 This method was
successfully applied for the discovery of
altered miRNAs between luminal A breast
cancer patients and healthy controls.79

Improvements through data inte-
gration?

It is undeniable that each of the previ-
ously discussed ‘omics levels and data min-
ing approaches already offer, on their own,
a large amount of crucial information.
However, the data obtained represent only a
proportion of the true biological complexity
of a living system. For this reason, the abil-
ity to integrate multiple ‘omics levels offers
great scope for the improved understanding
of such complex systems. Although such
approaches are varied and are normally tai-
lored for individual studies, as mentioned
previously, most data-mining approaches
can be applied to both single and multi-
omics studies.

Wang et al. integrated the tissue tran-
scriptome with the secretomes of two cell

lines. After initial data reduction based on
significant changes, integration of the secre-
tome and transcriptome datasets led to the
selection of 35 key drivers, of which the
importin subunit alpha 2 was defined as a
potential biomarker for non-small cell lung
cancer.80 Ou et al. generated proteomic and
transcriptomic data from cell lines using
2DE/MS and gene expression microarray
analysis. A comparison between the pro-
teomic and transcriptomic data generated a
subset of concordant markers, which were
then validated in tissue mRNA and tissue
microarrays.81

A different study highlighted the ability
of characterising different subtypes of dis-
eases, in this case hyperdiploid and non-
hyperdiploid multiple myeloma, using
multi-omics approaches. The integrated
study elucidated differences of disease char-
acteristics of these subtypes is not only
based on early promoting events, but also
manifests in differentially regulated path-
way activity and alterations in genetic
architecture.82

These two examples highlight the possi-
bilities such data integration harbours for
the understanding of complex diseases such
as cancer. Furthermore, it is widely accept-
ed that certain ‘omics levels are more close-
ly related, and consequently may be easier
to integrate and understand than others. The
direct integration of data does not focus
solely on correlations between the datasets,
but often has the purpose of filling the
potential gaps within the data and highlight-
ing interactions between the various 'omics
levels83,84 and the impact of alterations in
one 'omics level on the expression of
others.82

Conclusions
Currently, there is no one size fits all

approach for the integration of multi-omics
data. Each approach has its advantages and
suitability for certain questions, but also
presents limitations for others. For this rea-
son, it is crucial to carefully select the inte-
gration methods based on their suitability
for the research performed. Some unavoid-
able problems are faced by all researchers
and the research question asked is irrelevant
in this case. One such example of this are
the differences in gene/protein annotations
between ‘omics platforms that make the
integration/combination of data difficult.
Drastic improvements have been made in
the scientific equipment available over the
last 10 years, especially in the field of
sequencing technologies. Despite these
advances, obstacles which are mainly

attributed to the data gap in ‘omics plat-
forms and especially in the generation of
protein datasets remain.

In conclusion, combined ‘omics studies
contribute more than the sum of their indi-
vidual components. This approach gives the
scientist increasingly deeper insights into
the complex function of biological systems,
disease states and behaviour. The use of a
suitable integration approach can improve
the understanding of the phenotypic repre-
sentation of disease states and cell
behaviour and using this information, tai-
lored studies can be designed that will lead
to the development of novel drugs which
target the identified pathways and/or the use
of novel biomarkers in monitoring/diagnos-
ing disease. Ultimately, this could lead to
newly developed disease management
approaches and improvements in patient
care.
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