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New insight into the information carried by electrons
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SUMMARY

Since the development of electron holography, it has been recognised that the transmission electron
microscope is not only an extremely powerful microscope, but also a versatile electron-optical bench.
New developments in phase retrieval and phase tailoring have opened the way to further access to degrees
of freedom of free electrons, like orbital angular momentum. Recent advances in orbital angular momen-
tum sorting have added a new observation domain to the usual space and momentum, opening perspec-
tives to a new kind of microscopy.
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Dating back to early 1900s, the need to overcome the
resolution limit of light microscopes pushed the research
towards finding other kinds of probes capable of unveiling
the finer details of micrometric structures. The wavelength
of light was one of the limiting factors for resolution. It was
at that time that, inspired by the electron diffraction experi-
ments of 1927, Knoll and Ruska in 1932 proposed and deve-
loped an instrument, the electron microscope (Knoll and
Ruska, 1932), capable of overcoming this limit. Despite the
inconvenience of working in vacuum, using high voltage
and having limited access to the sample and to the electron-
optical elements, the electron microscope established itself
as a promising alternative to the light microscope. This has
been a huge revolution: being the wavelength of high-energy
electrons approximately four orders of magnitude smaller
than that of visible light, the possibilities were manifold.
Ruska was later awarded the Nobel Prize in Physics for this
discovery.

However, the wavelength of the electron was not the
limiting factor for the electron microscope resolution. There
were other major factors such as thermal, mechanical, and
electromagnetic instabilities, and aberrations. It was then in
1948 when the Nobel prize awardee Dennis Gabor develo-
ped electron holography (Gabor, 1948) to improve the reso-
lution of the electron microscope. He proposed this new
microscopic principle to circumvent spherical aberration
correction, which was too challenging at that time and found
successful application only in late 1990s (Haider et al.,
1998). However, holography didn’t have the highest impact
concerning resolution. This discovery led also to something
different: the unlocking of the phase information of the elec-
tron beam thanks to its interferometric character and to
Fourier optics.

Holography and phase manipulation found successful
application both in light and electron optics. Optical benches
offer ease of access to the various optical elements, and
phase-varying optical elements, the spatial light modulators
(Sampsell, 1990), allow for a precise, local, programmable
wavefront phase shifting. With electrons, technological
requirements are more demanding and these operations are
somewhat more difficult. However, the highly coherent elec-
tron source and the flexibility of the transmission electron
microscope (TEM) prove its versatility as an electron-opti-
cal bench for experiments involving the phase information
of the electron beam.

Phase manipulation techniques origin from the computa-
tional version of Gabor’s holography. In fact, the resulting
pattern of a holographic process can be used to shift the
phase of a reference wavefront and to retrieve the original
beam of interest encoded in the holographic process. This
way, wavefronts of different intensity and phase structures

can be generated.
An interesting example is the generation of wavefronts

with spiralling phase, which confers them a given orbital
angular momentum (OAM) value (Yao and Padgett, 2011).
The application of this concept to electrons is particularly
valuable as, due to their electrical charge, they are capable of
interacting with magnetic fields. Early examples of this kind
of electron beams are the works of the groups of Tonomura
(Uchida and Tonomura, 2010) Verbeeck (Verbeeck et al.,
2010) and McMorran (McMorran et al., 2011) in 2010s.
These works unlocked a new degree of freedom of electrons,
and paved the way for its applications in different techni-
ques. One example is making electromagnetic chiral
dichroism (Schattschneider et al., 2006) conveniently feasi-
ble in a TEM (Verbeeck et al., 2010), so to obtain informa-
tion on the spin and orbital magnetic moment of atoms
(Edström et al., 2016).

Once found the way to endow electron beams with
OAM, the need for reading this information became rele-
vant. The main issue is that this information is mainly enco-
ded in the phase of the electron wavefront, which is not
directly measurable. One way of tackling this challenge is to
apply phase retrieval techniques that could reveal the phase
structure of the beam (Hue et al., 2010; Lubk et al., 2013),
which properly manifests in the diffraction space and then
requires dedicated experimental techniques (Venturi et al.,
2017). 

There are however other more direct ways of measuring
the OAM of an electron beam. One example (Guzzinati et al.,
2014) uses hard masks that allow for checking if the beam has
a particular OAM value. One other example (Saitoh et al.,
2013) uses fork-gratings, which have the property of adding
or subtracting OAM to the beam, eventually leading to a beam
with no OAM then revealing its former OAM value.
Conversely, one recent application (Grillo et al., 2017) inspi-
red by an optics work (Berkhout et al., 2010) allows, by using
two holographic masks, to directly measure and sort the OAM
spectrum of the electron beam. In general, few electron beams
have a well-defined OAM value, but rather they are normally
characterised by a superposition of OAM states. In particular,
if their OAM content is the result of an actual interaction, like
one with a magnetic object, they normally have a full OAM
spectrum with different intensity coefficient for each OAM
value. In principle, this OAM-sorting technique would allow
for the measurement of the magnetisation of a sample with
very few electrons, as the observation takes place directly in
the OAM space. With technological improvements that can
enhance the efficiency of this device, it would be possible to
obtain magnetic and structural information from very small
and beam-sensitive samples ranging from molecular magnets
to magnetotactic bacteria. 
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The recently developed phase manipulation techniques,
along with the improved TEM characteristics, offer new
ways to encode information in the electron wavefunction
and to retrieve information from it. Some applications have
been explored and hopefully many more are yet to come,
conveying us towards exciting years for transmission elec-
tron microscopy, beyond high resolution.
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