Larvicidal activity of Vietnamese Solanum nigrum on mosquitoes Aedes aegypti and Aedes albopictus (Diptera: Culicidae)


Submitted: 1 February 2020
Accepted: 7 May 2020
Published: 29 May 2020
Abstract Views: 1994
PDF: 571
HTML: 22
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

  • T.D.H. Dinh Department of Fundamental Medicine, Hai Duong Medical Technical University, Viet Nam.
  • Q.T. Le Department of Parasitology and Entomology, Vietnam Military Medical University, Hanoi, Viet Nam.
  • T.D. Nguyen Department of Parasitology, Thai Binh University of Medicine and Pharmacy, Viet Nam.
  • T.Q.T. Nguyen Department of Parasitology, Thai Nguyen University of Medicine and Pharmacy, Viet Nam.
  • A.S. Ho Institute of Biomedicine and Pharmacy, Vietnam Military Medical University, Viet Nam.
  • V.B. Nguyen Oncology Center, Military Hospital 103, Vietnam Military Medical University, Viet Nam.
  • T.V. Nguyen Department of Parasitology and Entomology, Vietnam Military Medical University, Hanoi, Viet Nam.
  • T.H. Hoang Department of Microbiology, Nam Dinh University of Nursing, Viet Nam.
  • V.D. Nguyen Department of Entomology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Viet Nam.
  • K.L. Nguyen Department of Parasitology and Entomology, Vietnam Military Medical University, Hanoi, Viet Nam.

A Vietnamese domestic plant namely Solanum nigrum (S. nigrum) was subjected to test for larvicidal activity on two majors Dengue hemorrhagic fever (DHF) vectors Aedes aegypti (Ae. aegypti) and Aedes albopictus (Ae. albopictus). The plant was processed to get infusions in hot water or extracted in ethanol. Laboratory and field larval strains of two Aedes species were exposed to the infusions and extract at increasing concentrations for one hour and followed-up intensively for up to 72 hours. The obtained results of bioassay showed larvicidal effects of extract on all mosquito strains. The effects on laboratory strain of Ae. aegypti larvae were correlated with infusions and extract concentrations. Chopped plant infusions in hot water indicated mortality up to 77.3% of larvae. Ground plant infusions killed all of exposed larvae at day 3 postexposure. Median lethal concentrations (LC50,s) of chopped and ground plant infusions were 10.25 and 7.54%, respectively. Ethanolic extract had very strong effect on experimental subjects. Within 72 hours, 100% of laboratory strain of Ae. aegypti larvae died after exposure to extract at 100 parts per million (ppm) or higher concentrations. Ethanolic plant extract showed similar larvicidal effect on field strains of Ae. aegypti and Ae. albopictus. The percentage mortality of field strains larvae reached 100% after exposure to 100 ppm of plant extract. At concentrations of 1000 ppm, 100% of exposed larvae died with 8 hours. LC50 on tested larvae was 25.07-33.60 ppm. Strong larvicidal activity of S. nigrum suggests the possible application in DHF vector control effort.


Aponte, A., Penilla, R. P., Rodriguez, A. D. & Ocampo, C. B. 2018. Mechanisms of pyrethroid resistance in Aedes (Stegomyia) aegypti from Colombia. Acta Trop, 191, 146-154. https://library.uniquindio.edu.co/eds/detail?db=cmedm&an=30552882&isbn=1873-6254

de la Torre Rodriguez, Y. C., Martinez Estrada, F. R., Flores Suarez, A. E., Waksman de Torres, N. & Salazar Aranda, R. 2013. Larvicidal and cytotoxic activities of extracts from 11 native plants from northeastern Mexico. J Med Entomol, 50, 310-3. https://doi.org/10.1603/me12056

de Omena, M. C., Navarro, D. M., de Paula, J. E., Luna, J. S., Ferreira de Lima, M. R. & Sant'Ana, A. E. 2007. Larvicidal activities against Aedes aegypti of some Brazilian medicinal plants. Bioresour Technol, 2007 Sep;98(13):2549-56. doi: https://10.1016/j.biortech.2006.09.040.

Duong, H. T., Kadokami, K., Trinh, H. T., Phan, T. Q., Le, G. T., Nguyen, D. T., et al. 2018. Target screening analysis of 970 semi-volatile organic compounds adsorbed on atmospheric particulate matter in Hanoi, Vietnam. Chemosphere, 219, 784-795. doi: https://doi.org/10.1016/j.chemosphere.2018.12.096.

Edwin, U. P., Nyiutaha, I. G., Essien, A. E., Nnamdi, O. K. & Sunday, E. M. 2013. Larvicidal effect of aqueous and ethanolic extracts of Senna alata on Anopheles gambiae, Culex quinquefasciatus and Aedes aegypti. Pak J Pharm Sci, 26, 561-6. https://pubmed.ncbi.nlm.nih.gov/23625430/

Finney, D. J. 1971. Probit Analysis, New York, Cambridge University Press.

Govindarajan, M. & Sivakumar, R. 2014a. Larvicidal, ovicidal, and adulticidal efficacy of Erythrina indica (Lam.) (Family: Fabaceae) against Anopheles stephensi, Aedes aegypti, and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res, 113, 777-91. https://doi.org/10.1007/s00436-013-3709-4.

Govindarajan, M. & Sivakumar, R. 2014b. Ovicidal, larvicidal and adulticidal properties of Asparagus racemosus (Willd.) (Family: Asparagaceae) root extracts against filariasis (Culex quinquefasciatus), dengue (Aedes aegypti) and malaria (Anopheles stephensi) vector mosquitoes (Diptera: Culicidae). Parasitol Res, 113(4):1435-49. https://doi.org/10.1007/s00436-014-3784-1.

Grzybowski, A., Tiboni, M., Silva, M. A., Chitolina, R. F., Passos, M. & Fontana, J. D. 2013. Synergistic larvicidal effect and morphological alterations induced by ethanolic extracts of Annona muricata and Piper nigrum against the dengue fever vector Aedes aegypti. Pest Manag Sci, 69, 589-601. doi: https://doi.org/10.1002/ps.3409.

Hall, M. T., Briley, A. C., Lindroth, E. J., Fajardo, J. D., Cilek, J. E. & Richardson, A. G. 2017. A Small-Scale Investigation Into the Effect of A Larvicidal Oil On Oviposition Site Preference By Aedes aegypti. J Am Mosq Control Assoc, 33, 355-357. https://bioone.org/journals/journal-of-the-american-mosquito-control-association/volume-33/issue-4/17-6667.1/A-Small-Scale-Investigation-Into-the-Effect-of-A-Larvicidal/10.2987/17-6667.1.short

Hung, T. M., Clapham, H. E., Bettis, A. A., Cuong, H. Q., Thwaites, G. E., Wills, B. A., et al. 2018. The Estimates of the Health and Economic Burden of Dengue in Vietnam. Trends Parasitol, 34, 904-918. doi: https://www.sciencedirect.com/science/article/pii/S1471492218301454

Lee, J. S., Mogasale, V., Lim, J. K., Carabali, M., Lee, K. S., Sirivichayakul, C., et al. 2017. A multi-country study of the economic burden of dengue fever: Vietnam, Thailand, and Colombia. PLoS Negl Trop Dis, 11, e0006037. https://doi.org/10.1371/journal.pntd.0006037

Loi, D. T. 1977. Medical plants and remedies in Vietnam, Hanoi, Science and Technology Publisher.

McKern, H. H. & Parnell, I. W. 1964. The Larvicidal Effect of Various Chemical Compounds and Plant Products on the Free-Living Stages of Haemonchus Contortus Rud. (Nematoda). J Helminthol, 38, 223-44. https://doi.org/10.1017/s0022149x00033812.

Patel, M. K., Tiwari, A. & Saxena, V. L. 2018. Larvicidal Activity of Crude Solanum Nigrum Leaf and Berries Extract Against Dengue Vector-Aedes aegypti. International Journal of Current Research and Review, 10. http://ijcrr.com/article_html.php?did=2506

Phasomkusolsil, S. & Soonwera, M. 2010. Insect repellent activity of medicinal plant oils against Aedes aegypti (Linn.), Anopheles minimus (Theobald) and Culex quinquefasciatus Say based on protection time and biting rate. Southeast Asian J Trop Med Public Health, 41, 831-40. https://pubmed.ncbi.nlm.nih.gov/21073057/

Phasomkusolsil, S. & Soonwera, M. 2011. Efficacy of herbal essential oils as insecticide against Aedes aegypti (Linn.), Culex quinquefasciatus (Say) and Anopheles dirus (Peyton and Harrison). Southeast Asian J Trop Med Public Health, 42, 1083-92. https://pubmed.ncbi.nlm.nih.gov/22299433/

Rawani, A., Chowdhury, N., Ghosh, A., Laskar, S. & Chandra, G. 2013. Mosquito larvicidal activity of Solanum nigrum berry extracts. Indian J Med Res, 137, 972-6. https://pubmed.ncbi.nlm.nih.gov/23760385/

Rawani, A., Ghosh, A. & Chandra, G. 2010. Mosquito larvicidal activities of Solanum nigrum L. leaf extract against Culex quinquefasciatus Say. Parasitol Res, 107, 1235-40. https://link.springer.com/article/10.1007/s00436-010-1993-9

Rodriguez-Roche, R. & Gould, E. A. 2013. Understanding the dengue viruses and progress towards their control. Biomed Res Int, 2013, 690835. https://doi.org/10.1155/2013/690835

Silva, O. S., Prophiro, J. S., Nogared, J. C., Kanis, L., Emerick, S., Blazius, R. D., et al. 2006. Larvicidal effect of andiroba oil, Carapa guianensis (Meliaceae), against Aedes aegypti. J Am Mosq Control Assoc, 22, 699-701. https://jglobal.jst.go.jp/en/detail?JGLOBAL_ID=200902277384722516

Soonwera, M. & Phasomkusolsil, S. 2016. Effect of Cymbopogon citratus (lemongrass) and Syzygium aromaticum (clove) oils on the morphology and mortality of Aedes aegypti and Anopheles dirus larvae. Parasitol Res, 115, 1691-703. https://doi.org/doi: 10.1007/s00436-016-4910-z

Tilak, R., Ray, S., Tilak, V. W. & Mukherji, S. 2016. Dengue, chikungunya ... and the missing entity - Zika fever: A new emerging threat. Med J Armed Forces India, 72, 157-63. http://doi.org/10.1016/j.mjafi.2016.02.017

Trongtokit, Y., Rongsriyam, Y., Komalamisra, N. & Apiwathnasorn, C. 2005. Comparative repellency of 38 essential oils against mosquito bites. Phytother Res, 19, 303-9. https://doi.org/10.1002/ptr.1637

Tsunoda, T., Cuong, T. C., Dong, T. D., Yen, N. T., Le, N. H., Phong, T. V., et al. 2014. Winter refuge for Aedes aegypti and Ae. albopictus mosquitoes in Hanoi during Winter. PLoS One, 9, e95606. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0095606

Tsuzuki, A., Sunahara, T., Duoc, V. T., Le Nguyen, H., Higa, Y., Phong, T. V., et al. 2013. Effect of housing factors on infestation by Aedes aegypti (L.) and Aedes albopictus Skuse in urban Hanoi City, Vietnam. Southeast Asian J Trop Med Public Health, 44, 979-87. https://pubmed.ncbi.nlm.nih.gov/24450235/

Tu, Y. 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med, 17, 1217-20. http://www.laskerfoundation.org/media/filer_public/93/c2/93c20cb8-8451-4bb6-a46d-e6969c54f19a/2011_c_youyou.pdf

Whitehorn, J., Kien, D. T., Nguyen, N. M., Nguyen, H. L., Kyrylos, P. P., Carrington, L. B., et al. 2015. Comparative Susceptibility of Aedes albopictus and Aedes aegypti to Dengue Virus Infection After Feeding on Blood of Viremic Humans: Implications for Public Health. J Infect Dis, 212, 1182-90. https://academic.oup.com/jid/article/212/8/1182/2192912

WHO 2003. Guidelines for dengue surveillance and mosquito control.), World Health Organisation. https://apps.who.int/iris/handle/10665/206987

Williams, C. R., Ritchie, S. A., Long, S. A., Dennison, N. & Russell, R. C. 2007. Impact of a bifenthrin-treated lethal ovitrap on Aedes aegypti oviposition and mortality in north Queensland, Australia. J Med Entomol, 44, 256-62. https://doi.org/10.1603/0022-2585(2007)44[256:ioablo]2.0.co;2

Supporting Agencies

National Key Scientific and Technical Programs, Vietnam Ministry of Science and Technology.

Dinh, T., Le, Q., Nguyen, T., Nguyen, T., Ho, A., Nguyen, V., Nguyen, T., Hoang, T., Nguyen, V., & Nguyen, K. (2020). Larvicidal activity of Vietnamese <em>Solanum nigrum</em> on mosquitoes <em>Aedes aegypti</em> and <em>Aedes albopictus</em> (Diptera: Culicidae). Journal of Entomological and Acarological Research, 52(1). https://doi.org/10.4081/jear.2020.8866

Downloads

Download data is not yet available.

Citations