ENTOMOLOGY

Comparative analysis of the internal and external outlines of wings for an outline-based geometric morphometric approach to distinguish three *Aedes* mosquitoes (Diptera: Culicidae) in Thailand

T. Chaiphongpachara, S. Laojun

Department of Public Health and Health Promotion, College of Allied Health Science, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand

Abstract

Aedes mosquitoes belong to a subgenus of Stegomyia (Diptera: Culicidae), which are dengue and chigunkunya vectors, including *Aedes aegypti, Ae. albopictus,* and *Ae. scutellaris,* and have a world-wide distribution in tropical and subtropical regions. Species identification of mosquitoes is challenging yet necessary to select appropriate control methods for each species. In this study, we have analyzed the different wing components for identification to find the optimal outline for *Aedes* mosquito analysis by an outline-based GM approach. Two internal and external outlines of the wing were considered for *Aedes* species identification in this study. A total of 90 *Aedes* wings were analysed, divided into 30 wings per species (*Ae. aegypti, Ae. albopictus,* and *Ae. scutellaris*). The results showed that the mean size of *Ae. scutellaris*, respectively, in all the internal and external outlines. While, the shape analysis in the three

Correspondence: Tanawat Chaiphongpachara, Department of Public Health and Health Promotion, College of Allied Health Science, Suan Sunandha Rajabhat University, 7500 Samut Songkhram, Thailand. Email: tanawat.ch@ssru.ac.th

Key words: Geometric morphometric, outline-based approach, Aedes aegypti, Aedes albopictus, Aedes scutellaris.

Contributions: the authors contributed equally.

Conflict of interest: the authors declare no potential conflict of interest.

Funding: none.

Received for publication: 23 February 2019. Accepted for publication: 3 June 2019.

[®]Copyright: the Author(s), 2019 Licensee PAGEPress, Italy Journal of Entomological and Acarological Research 2019; 51:8133 doi:10.4081/jear.2019.8133

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (by-nc 4.0) which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. outlines were expressed by the factor map, the statistical difference and cross-validated classification scores indicated the ability of the outline-based GM approach to distinguish species of *Aedes* mosquitoes. The external outline has a relatively good range of cross-validated classification scores compared to the other internal outlines. The results of this research reveal the suitability of this external outline to identify species of *Aedes* vectors in Thailand.

Introduction

Mosquitoes are one of medically important insects that transmit human pathogens, such as viruses, protozoans, and nematodes (World Health Organization, 2016). *Aedes* mosquitoes belong to a subgenus of Stegomyia (Diptera: Culicidae), which are dengue and chigunkunya vectors, including *Aedes aegypti, Ae. albopictus*, and *Ae. scutellaris*, and have a worldwide distribution in tropical and subtropical regions (Service, 2008; Honório & Castro, 2009). Dengue and chigunkunya are mosquito-borne viral infections, and about half of the world's population is now at risk, particularly in urban and semi-urban areas (Lee *et al.*, 2018; Leta *et al.*, 2018). For control of these diseases, the World Health Organization has identified that it is relevant to control the *Aedes* populations in endemic areas (World Health Organization, 2014; 2016).

Species identification of mosquitoes is challenging yet necessary to select appropriate control methods for each species (Chaiphongpachara & Sumruayphol, 2017). Ae. aegypti and Ae. albopictus are primary vectors of the dengue, chigunkunya, and Zika fever viruses, which can be easily be separated for adults based on their morphological features, by observing the patterns on the thorax (Sumruayphol et al., 2016). The scutum in the thorax of the Ae. aegypti has lyre-shaped white markings, while the Ae. albopictus has a long median-longitudinal white stripe. However, in some cases, the specimen is damaged, especially in the thorax, which may lead to errors in the identification of both Aedes species (Rattanarithikul et al., 2005). Ae. scutellaris are reported to be dengue vectors in Papua New Guinea, but not as prominent as Ae. aegypti and Ae. albopictus (Sumruayphol et al., 2016). In addition, the morphological characteristics of Ae. scutellaris and Ae. albopictus are very similar (Rattanarithikul et al., 2010).

Geometric morphometrics (GM) are an alternative method for species identification based on geometry, especially in mosquitoes and others insects (Dujardin, 2008; Lorenz *et al.*, 2017). The land-mark-based approach is one GM technique which is becoming pop-

ular as it is convenient and fast to analyse (Chaiphongpachara, 2018; Chaiphongpachara *et al.*, 2018). An outline-based approach is also one of GM techniques that uses the analysis of the contour of forms based on elliptic Fourier analysis that are studied less than the landmark-based approach (Albutra *et al.*, 2012; Santillán-Guayasamín *et al.*, 2017). Recently, the outline-based GM technique has been used to identify *Aedes aegypti*, *Ae. albopictus*, and *Ae. scutellaris* in Thailand by the external outline and it was found that it is highly effective to distinguish each species (Sumruayphol *et al.*, 2016). However, in addition to the external outline, other internal outlines in the wings are interesting for studying the specific location of *Aedes* species identification via an outline-based GM analysis.

In this study, we have analysed the different wing components for identification to find the optimal outline for *Aedes* mosquitoes in the analysis by outline-based GM approach. The results of this study can be used to fulfil to the knowledge of using outline-based GM approach to solve the problem of identification of mosquitoes further.

Materials and Methods

Aedes mosquito collection

The larvae and pupae stage of the three *Aedes* species were collected by a dipping method in water containers in the communities of the Mueang Samut Songkhram District and Samut Songkhram Province, Thailand, during August 2018. Mosquito samples were transported and reared in a laboratory at the College of Allied Health Sciences, Suan Sunandha Rajabhat University. The conditions of the laboratory in this study was controlled at 25°C and 50-60% relative humidity under a 12/12 h light/dark cycle. While rearing mosquito larvae, plastic trays containing filtered water were used and provided 0.1 g of dog food per day. When the larvae stage developed into pupae, they were transferred to $30 \times 30 \times 30$ cm cages to facilitate emergence. After that, the adult female *Aedes* mosquitoes that emerged were morphologically identified using taxonomy (Rattanarithikul *et al.*, 2005; 2006).

Mosquito wing preparation

Thirty individuals in each species of female *Aedes* mosquitoes were randomly selected using a table of random numbers. The right wing of each mosquito was used in this study for GM analysis

ACCESS

by dissection and mounting on glass microscope slides with a coverslip using Hoyer's medium. All slides were photographed using a Nikon DS-Ri1 SIGHT digital camera connected to a Nikon Eclipse E600 microscope (Nikon Corp., Tokyo, Japan) under $40\times$ magnification with a 1 mm scale bar included in all wing pictures.

Outline-based GM analysis

Two internal and one external outlines of the wing in Figure 1 were considered for *Aedes* species identification. In this research, a repeatability test was implemented for evaluating the accuracy of the measurement marked before GM analysis (Arnqvist & Märtensson, 1998).

The size was estimated as perimeter of each outline, while the elliptic Fourier analysis was used to analyze shape variables. Wing size variation between *Aedes* species in each internal and external outline was illustrated by quantile boxes, while the wing shape variation was illustrated by the superimposition of the mean forms. A factor map was created to show shape divergence for each species from a discriminant analysis. In addition, discriminant analysis also calculated Mahalanobis distance, which is used to determine the variance and correlation of variables.

Statistical significance of the perimeter of the outline and the Mahalanobis distance of the internal and external outlines between *Aedes* species in each pair was calculated by 1000 runs of non-parametric permutation tests with a Bonferroni correction at P-values <0.05. Finally, a cross-validated classification test was used to show percent accuracy between species.

Software

The CLIC (Collection of Landmarks for Identification and Characterization) package, version 97 (Dujardin & Slice, 2007), which is freely available at https://xyom-clic.eu, was used for out-line-based GM analysis.

Results

A total of 90 *Aedes* wings were analyzed, divided into 30 wings per species (*Ae. aegypti, Ae. albopictus,* and *Ae. scutellaris*). The results of the repeatability test of the size and shape to determine the accuracy of measurement repeatedly showed good quality in each internal and external outline. The measurement error for

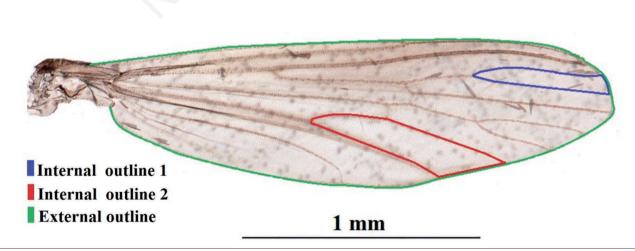


Figure 1. Three outlines digitized for the wing of *Aedes* mosquito. Each outline for outline-based GM analysis included an internal outline 1 (blue), internal outline 2 (red), and external outline (green). Size was estimated as the perimeter of the outline.

size and shape was <1% (for repeatability of size, it was 0.96 and for shape, it was 0.94).

Wing size analysis

The wing size of each species of *Aedes* mosquitoes was estimated by the perimeter of the outline. Variation of the wing perimeter between species in each internal and external outline was shown in Figure 2. The mean size of *Ae. albopictus* wings was the largest, followed by *Ae. aegypti*, and *Ae. scutellaris*, respectively, in all the internal and external outlines. Statistical comparisons of the mean perimeter of the internal and external outlines of the wing between *Aedes* species indicated the difference in some pairwise, including that *Ae. scutellaris* was different from *Ae. aegypti* and *Ae. albopictus* in the internal outline 1 and the external outline of the *Aedes* wing, while *Ae. albopictus* was different from *Ae. aegypti* and *Ae. scutellaris* in internal outline 2 (P<0.05; Table 1).

Shape analysis

A discriminant evaluation analysis variation on wing shape among species was derived after the superimposition algorithm of the mean outlines of *Aedes* species in each internal and external outline of the wing (Figure 3). Discriminant analysis was taken to create factor maps to visualize, which found that they have little overlap in the external outline (Figure 4). Every pairwise Mahalanobis distance has statistical differences in internal outline 1 and external outline (P<0.05), while the pairwise of *Ae. albopictus* and *Ae. scutellaris* did not show a statistical difference in internal outline 2 (P>0.05; Table 2).

Table 1. Statistical comparisons of the perimeter of the internal and external outlines of the Aedes wing between species.

Species	Mean±Standard deviation (mm) of the perimeter		
	Internal outline 1	Internal outline 2	External outline
Ae. aegypti	1.43 ± 0.02^{a}	1.93±0.02ª	5.32-0.21ª
Ae. albopictus	1.45 ± 0.01^{a}	2.06 ± 0.03^{b}	5.39-0.16 ^a
Ae. scutellaris	1.25 ± 0.03^{b}	1.90 ± 0.06^{a}	4.92-0.32 ^b

In each row, different superscript letters are statistical differences at $P{<}0.05$.

Table 2. Statistical significance of pairwise Mahalanobis distance between Aedes species in each internal and external wing outline.

Outlines	Species	Ae. aegypti	Ae. albopictus	Ae. scutellaris
Internal outline 1	Ae. aegypti Ae. albopictus Ae. scutellaris	3.62* 3.04*	4.88*	-
Internal outline 2	Ae. aegypti Ae. albopictus Ae. scutellaris	4.43* 4.49*	3.44	
External outline	Ae. aegypti Ae. albopictus Ae. scutellaris	2.65* 3.57*	3.05*	-

*Statistical differences.

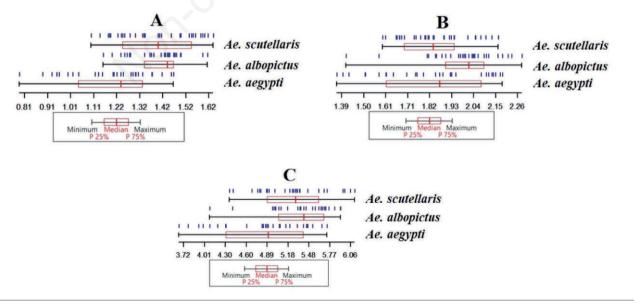


Figure 2. Variation of wing perimeter (mm) of each species of *Aedes* mosquitoes (A=internal outline 1, B=internal outline 2, and C=external outline). Each box shows the group median that separates the 25th and 75th quartiles, and vertical bars represent the sizes of the individual *Aedes* sample.

A cross-validated classification test revealed the analytic capabilities of all three outlines by outline-based GM analysis. The range of accuracy in the Aedes species classification of the internal outline 1 was 46-73%, of the internal outline 2 was 40-63%, and of the external outline was 53-70% (Table 3).

Discussion and Conclusions

In this study, we evaluated the internal and external outlines of wings in mosquitoes for an appropriate position of the outlinebased GM technique in the discrimination of three Aedes species. The results of the study revealed different efficiencies in each outline, including size and shape, when used for the outline-based GM analysis with Aedes mosquitoes.

Wing size

The mean of the perimeter of outlines among Aedes mosquetoes were similar in all different outlines (Ae. albopictus > Ae. *aegypti > Ae. scutellaris*), which shows the relationship between each outline with the wing. The statistical tests found that each outline had a difference in each pairwise of different species. This underscores the importance of the outline part in the outlinebased analysis, which affects the size results. This result of external outline analysis was consistent with a previous study that identified species of Aedes mosquitoes in Thailand (Sumruayphol et al., 2016). However, shape is not widely used in the classification of organisms as they are highly variable from the effects of the environment, such as temperature and quality of food received in the habitat (Jirakanjanakit et al., 2007; Dujardin, 2008; 2011; Kaba et al., 2017).

Wing shape

For species identification, shape is considered more appropri-

ate than size factors. The results of the shape factor analysis in the three outlines were expressed by the factor map, statistical difference, and cross-validated classification scores that indicate the ability of an outline-based GM approach to distinguish species of Aedes mosquitoes. These are in line with previous research that used outline-based GM to identify mosquito vectors of different species in Ratchaburi Province, Thailand, which can separate Ae. aegypti and Ae. albopictus from other mosquitoes within the range of 86% and 95%, respectively (Chaiphongpachara, 2018), Crossvalidated classification scores revealed that each outline has different efficacy in identifying Aedes mosquitoes, especially in Ae. aegypti, including 46% of internal outline 1, 50% of internal outline 2, and 66% of external outline. This was different from the study of Sumruayphol et al., (2016), which found that Ae. aegypti were best classified by the outline method (87% for external outline analysis).

However, this inconsistency may be due to morphological variations because of the various environments in each area. An external outline has a relatively good range of cross-validated classification scores compared to other internal outlines [53-70% (external outline) vs 46-73% (internal outline 2) and 40-63% (internal outline 1)]. It is very important to use the outline as a location for identification by an outline-based GM approach. The results of this research reveal the suitability of this external outline to identify the species of Aedes mosquitoes as dengue, chigunkunya, and Zika vectors.

An outline-based GM technique is one approach of GM that can help in the identification of some species of mosquitoes effectively, such as separating Ae. scutellaris from Ae. aegypti and Ae. albopictus. The outline for the analysis is very important in this approach, which must be specific to the mosquito species used in the identification. The results of this study support that the external outline has the ability to be analyzed by an outlinebased GM technique for Aedes mosquitoes better than other internal outlines.

Table 3. Cross-validated classification	of three species of Aedes mo	squitoes in each internal a	nd external wing outline.
	The second	1	8

Species		Percent accuracy of classification (assigned/observed)		
		Internal outline 1	Internal outline 2	External outline
Ae. aegypti		46 (14/30)	50 (15/30)	66 (20/30)
4e. albopictus		53 (16/30)	40 (12/30)	53 (16/30)
Ae. scutellaris		73 (22/30)	63 (19/30)	70 (21/30)
Α		В		В
\leq				\geq
Ae.	aegypti albopictus scutellaris		Ae. aeg Ae. albo Ae. scut	opictus
			С	
	l)
		Ae. aegypti		

Figure 3. Superimposition of mean outlines of each Aedes species. (A=internal outline 1, B=internal outline 2, and C=external outline).

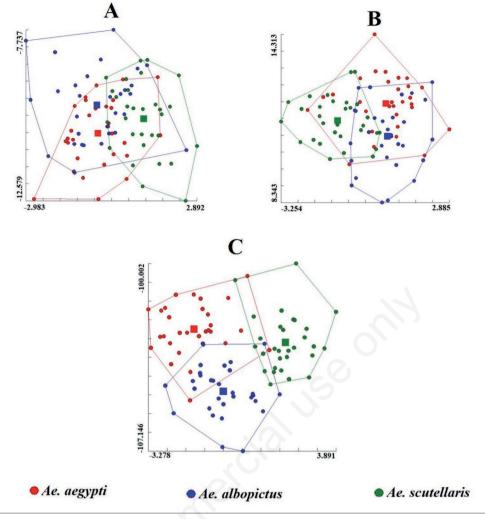


Figure 4. Factor maps from discriminant analyses showing the variation of wing shape in *Ae. aegypti* (red), *Ae. albopictus* (blue), and *Ae. scutellaris* (green) in each internal (cell 1 [A] and cell 2 [B]), and external outline (C).

References

- ALBUTRA Q., TORRES M., DEMAYO C., 2012 Outline and landmark based geometric morphometric analysis in describing sexual dimorphism in wings of the white stem borer (Schirpophaga innotata Walker). - Animal. Biol. 4: 5-14.
- CHAIPHONGPACHARA T., 2018 Comparison of Landmarkand Outline-Based Geometric Morphometrics for Discriminating Mosquito Vectors in Ratchaburi Province, Thailand. BioMed Res. Int. doi.org/10.1155/2018/6170502.
- CHAIPHONGPACHARA T., JUIJAYEN N., CHANSUKH K.K., 2018 - Wing geometry analysis of *Aedes aegypti* (Diptera,Culicidae), a dengue virus vector, from multiple geographical locations of Samut Songkhram, Thailand. - J. Arthropod. Borne. Dis. 12: 351-360.
- CHAIPHONGPACHARA T., SUMRUAYPHOL S., 2017 -Species diversity and distribution of mosquito vectors in coastal habitats of Samut Songkhram province, Thailand. -Trop Biomed. 34: 524-532.
- DUJARDIN J.P., 2008 Morphometrics applied to medical entomology. - Infect. Genet. Evol. 8: 875-890.

- DUJARDIN J.P., 2011 Modern morphometrics of medically important insects, Genetics and evolution of infectious diseases. - Elsevier, pp 686.
- HONÓRIO N., CASTRO M., 2009 The spatial distribution of *Aedes aegypti* and *Aedes albopictus* in a transition zone, Rio de Janeiro, Brazil. - Cad. Saude Publ. 25: 1203-1214.
- JIRAKANJANAKIT N., LEEMINGSAWAT S., THON-GRUNGKIAT S., APIWATHNASORN C., SINGHANIYOM S., BELLEC C., DUJARDIN J.P., 2007 - Influence of larval density or food variation on the geometry of the wing of *Aedes* (*Stegomyia*) aegypti. - Trop. Med. Int. Health. 12: 1354-60.
- KABA D., BERTÉ D., TA B.T.D., TELLERÍA J., SOLANO P., DUJARDIN J., 2017 - The wing venation patterns to identify single tsetse flies. - Infect. Gene. Evol. 47: 132-139.
- LEE H., HALVERSON S., EZINWA N., 2018 Mosquito-Borne Diseases. Prim. Care 45: 393-407.
- LETA S., BEYENE T.J., DE CLERCQ E.M., AMENU K., KRAE-MER M.U.G., REVIE C.W., 2018 - Global risk mapping for major diseases transmitted by *Aedes aegypti* and *Aedes albopictus*. - Int. J. Infect. 67: 25-35
- LORENZ C., ALMEIDA F., ALMEIDA-LOPES F., LOUISE C., PEREIRA S.N., PETERSEN V., SUESDEK L., 2017 -

Geometric morphometrics in mosquitoes: What has been measured. - Infect. Genet. Evol. 54: 205-215.

- RATTANARITHIKUL R., HARBACH R.E., HARRISON B.A., PANTHUSIRI P., COLEMAN R.E., RICHARDSON J.H., 2010 - Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. - Southeast. Asian J. Trop. Med. Public. Health. 1: 1-225.
- RATTANARITHIKUL R., HARRISON B.A., PANTHUSIRI P., PEYTON E.L., COLEMAN R.E., 2006 - Illustrated keys to the mosquitoes of Thailand: III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast. Asian J. Trop. Med. Publ. Health 1: 1-85.
- RATTANARITHIKUL R., HARRISON B.A., PANTUSIRI P., COLEMAN R.E., 2005 - Illustrated keys to the mosquitoes of Thailand. - Southeast. Asian J. Trop. Med. Publ. Health 1: 1-80.
- SANTILLÁN-GUAYASAMÍN S., VILLACÍS A.G., GRIJALVA

M.J., DUJARDIN J.P., 2017. - The modern morphometric approach to identify eggs of Triatominae. - Parasit. Vectors 10: 55.

- SERVICE M., 2008 Medical entomology for students, fourth edition. Medical Entomology for Students. 4th Edition. Cambridge University.
- SUMRUAYPHOL S., APIWATHNASORN C., RUANGSIT-TICHAI J., SRIWICHAI P., ATTRAPADUNG S., SAMUNG Y., DUJARDIN J.P., 2016 - DNA barcoding and wing morphometrics to distinguish three *Aedes* vectors in Thailand. - Acta Trop. 159: 1-10.
- WORLD HEALTH ORGANIZATION, 2014 WHO Factsheet Vector-borne diseases. Factsheet Number 387: 10.
- WORLD HEALTH ORGANIZATION, 2016 Mosquito borne diseases. Available from: http://www.who.int/neglected_diseases/vector_ecology/mosquito-borne-diseases/en/.

Houro