
Abstract 

In the last years, numerous studies have supported the idea that,
at least in part, motivational and neuropharmacological effects of
ethanol are mediated by its first brain-derived metabolite, acetalde-
hyde, and its bioderivate salsolinol. This review aims at gathering
and shaping as a whole the evidence on their role in the mechanism
of action of ethanol. Acetaldehyde and salsolinol interact with the
reward brain system and are involved as primum movens of motiva-
tional and addictive behaviour that can be especially relevant to
ethanol use disorders. Understanding the neurobiology of acetalde-
hyde and salsolinol holds promising potential for the development
of novel pharmacological approaches for reducing ethanol abuse.

Introduction

In the last years, numerous studies have supported the idea
that, at least in part, motivational and neuropharmacological
effects of ethanol (EtOH) are mediated by its first brain-derived

metabolite, acetaldehyde (ACD) and/or its bioderivates, salsolinol
(SAL), above all.1,2 ACD is formed in the brain mainly through a
catalase-mediated reaction.3 SAL, on the other hand, can be
formed in the brain through the non-enzymatic condensation of
ACD and dopamine (DA).4 Over the past four decades, several
studies have investigated the involvement of ACD and SAL in the
behavioural and neurobiological effects of EtOH, and we hypoth-
esise that both compounds play a functional and specific role in
the development of EtOH abuse and alcoholism.5-8

The aim of this review is to gather and shape as a whole the
evidence in support of this hypothesis.

Materials and Methods

The literature search targeted evidence-based guidelines, evi-
dence-based summaries, systematic reviews and recent experi-
mental research on ACD and SAL central and behavioural effects.
The keywords used were ethanol, acetaldehyde, salsolinol and
dopaminergic pathway. Through this simple strategy, we identi-
fied more than 1000 sources using PubMed and Scopus (last
accessed via PubMed and SCOPUS on April 2017).

From EtOH to ACD 
ACD is produced in the human body after the consumption of

EtOH in a tissue-specific fashion,9-11 and occurs naturally in alco-
holic beverages. Indeed, substantial ACD concentrations have
been detected in several products, accounting for apple wines and
ciders, fortified wines and spirits such as sugarcane spirits (cuxa;
cachaça), agave spirits and calvados,12-18 to which it gives a dis-
tinctive flavour.

It is widely recognised the relevance of EtOH chemosensory
stimuli in eliciting craving and associated drug-seeking responses
in EtOH-experienced individuals.19,20 Indeed, EtOH and ACD
gain immediate access to the central nervous system via their
complex chemosensory attributes. Importantly, these sensory
pathways are linked to limbic forebrain and cortical areas
involved in controlling motivation and feeding.21-23 Whatever its
source, either as original substance or as EtOH bioderivate, ACD
possesses stimulating effects on some areas of the reward pathway
in the brain, i.e., ventral tegmental area (VTA) and nucleus accum-
bens (NAc), leading to DA release, positive reinforcement and
induction of dependence.24-27

In the intracranial self-administration paradigm, whereby rats
receive response-contingent infusions of a compound directly into a
discrete brain region, rats readily self-administer ACD into the
VTA.28,29 Specifically within the VTA, ACD is able to activate DA
neurons by significantly increasing their firing rate, similarly to
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EtOH.30-33 Moreover, DA neurons within the posterior VTA (pVTA)
exhibit a significantly greater sensitivity to ACD compared to EtOH
so that 23μM ACD is effective at significantly increasing DA efflux
within the NAc shell to levels 200% above baseline.28

The neurochemical feature underlying ACD availability in the
VTA is paralleled by behavioural evidence of ACD’s own reinforc-
ing properties in the conditioned place preference (CPP), a behav-
ioural paradigm widely used to explore rewarding effects of drugs.34

A high preference for ACD-paired cues is observed when ACD is
administered both intraperitoneally and orally.35,36 Although place
preference is suggestive of drug-associated reinforcement, it focuses
on automatic or implicit expressions of reward, rather than on active
motivated behaviour. Besides, report exists on the evaluation of
acquisition and maintenance of ACD drinking behaviour in self-
administration paradigms in rats. As EtOH, rats voluntarily self-
administer ACD in a two-bottle choice drinking-paradigm; more-
over ACD intake increases when higher concentration is provided.37-

40 The flavour and taste of ACD solution may actually serve as con-
ditioned stimuli of post-ingestional effects.41

Positive reinforcing properties of ACD have been further
investigated by using operant self-administration paradigms, in
which animals are trained to emit a specific response (lever press
or nose poke) for gaining the reinforcement.42 ACD shows rein-
forcing effects at concentrations 1000 lower than EtOH.28,43 When
introduced by the natural oral route, ACD is reported to induce and
maintain operant drinking behaviour according to fixed and pro-
gressive ratios of reinforcement.6,44 In addiction research, the oper-
ant conditioning paradigm has always been considered an invalu-
able tool, since it allows to thoroughly explore discrete features of
addictive behaviour, as reported for humans in the Diagnostic and
Statistical Manual of Mental Disorders - 5th edition.45 Indeed,
ACD-drinking rats display resistance to extinction when reinforce
delivery is withheld, and a powerful deprivation-effect when ACD
availability is resumed after repeated cycles of deprivation.6,7,44,46

Notably, evidence from the operant-conflict paradigm has shown
that the operant response for ACD persists also in the presence of
an aversive stimulus,6,46 further highlighting the motivational
effect of the compound. 

Although Peana et al.44 reported that brain ACD levels do not
significantly differ between rats consuming oral ACD and those con-
suming water in their experimental conditions, recent evidence
shows a significant increase in ACD brain content when ACD is
introduced by a free-access paradigm. Indeed, following a 4-week
two-bottle choice paradigm with ACD at 3.2% v/v, ACD concentra-
tion in the brain is increased by 29.52% with respect to control lev-
els.37 The discrepancy may be due to the different ACD drinking pat-
tern and to the detection technique itself. In the ACD free-access par-
adigm, ACD is consumed chronically and continuously on rat’s
demand, producing higher blood levels than in the operant-drinking
sessions, that may overcome ACD-dehydrogenase activity and cross
the blood-brain barrier. Moreover, gas chromatography with head-
space, although specific for aldehyde detection, might display poor
sensitivity for low concentration of analytes, probably making ACD
detection awkward. Dinitrophenylhydrazine-acetonitrile derivatiza-
tion instead, could overcome these limits. Indeed, using this tech-
nique, extraction and purification are unnecessary, making the pro-
cedure simple, rapid and accurate, allowing to measure subtle but
significant variations in ACD levels in the brain.47-49

ACD interaction with the reward system legitimises its
involvement as primum movens of motivational and addictive
behaviour that can be especially relevant to EtOH use disorders.

DA plays a fundamental role in the expression of operant
behaviour elicited by rewards and reward-related stimuli.

Importantly, ACD induces DA release in the NAc shell at the same
doses used in CPP studies.32,36,50-52 Consequently, when quinpirole
is used to activate presynaptic D2 autoreceptors, thus reducing
ACD-induced DA release, a profound inhibition of seeking-behav-
iour for ACD occurs.7,28 In accordance with chronic EtOH-induced
down-regulation of DA signalling in the limbic regions,53 sub-
chronic stimulation of postsynaptic D2/D3 receptors, by the
administration of ropinirole during ACD deprivation, turns off rats
craving and inhibits relapse when ACD is available.7

Along with DA transmission, the endocannabinoid system
plays an important role in value attribution processing and in mod-
ulation of EtOH-seeking behaviour,54-56 in view of its role as fine
modulator of incoming inputs within the limbic brain regions.57-61

Indeed, ACD-seeking behaviour and punishment resistance in the
operant-conflict paradigm, and withdrawal symptoms following
ACD intoxication, are blunted when CB1 signalling is inhibited by
the administration of a CB1 specific antagonist AM281.46,62

Overall this evidence suggests that ACD reinforcing activity
involves endocannabinoids production, which in turn, modulates
DA mesocorticolimbic pathway through CB1 receptors (Figure 1).
Hence, the pharmacological inhibition of CB1 signalling might
represent a promising strategy for counteracting the neurochemical
imbalance associated with ACD- and EtOH- addictive behaviour.

From ACD to SAL
Pre-clinical studies considered so far have shown that ACD is

a neuroactive molecule with its own psychopharmacological prop-
erties, that can be considered as a necessary component for the
occurrence of the neurobiological and behavioural effects of
EtOH.63 Despite of its short half-life,63,64 ACD may condensate,
either spontaneously or enzymatically, with nucleophilic com-
pounds, such as monoamines, to produce tetrahydroisoquino-
lines65. When condensation occurs with DA, ACD generates 1-
methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline, SAL. In
particular SAL is formed either by non-enzymatic Pictet-Spengler
condensation with ACD, yielding racemic (R/S)-SAL, or through
enzymatic biosynthesis by (R)-SAL synthase, which enantio-selec-
tively synthesizes (R)-SAL from DA and ACD.66-69

Endogenous identification of SAL has been analytically chal-
lenging because of its very low levels in the brain.70 However the
implementation of sensitive, reliable, and versatile methods for
SAL analysis in the brain,69 has helped proving that SAL content
increases in several brain regions (NAc, caudate putamen, mid-
brain, hypothalamus) after very different alcohol drinking proce-
dures.69,71-73 Interestingly, under EtOH and DA co-application
higher levels of SAL are determined in slices from naïve mice.74

Conversely, SAL itself can promote EtOH drinking:  this has been
proved by early findings in the rat and corroborated by evidence
from primate studies showing abnormal alcohol intake produced
by centrally infused SAL.75,76 The observed reciprocal interaction
supports the theory that amine-aldehyde metabolites may consti-
tute a causal neurochemical factor in the onset of the rewarding
properties of EtOH and in the development of EtOH addic-
tion.77,78. Behavioural observations in rats following direct injec-
tion of only 30 pmol SAL into the VTA report behavioural sensiti-
sation, strong motor activity and significant increases in voluntary
EtOH consumption.79 Moreover, significant place preference is
induced by SAL, given either intraperitoneally or by local micro
injection into the pVTA.80,81 Notably, rats readily self-administer
SAL into the NAc shell and pVTA,29,43 suggesting that SAL itself
may act as a reinforcer in the mesolimbic system. Indeed, in a
recent elegant study, Melis and colleagues74 found that, similarly
to EtOH and ACD, SAL significantly stimulates the firing rate of
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DA cells in the pVTA. Specifically, the onset of the effects of
EtOH, ACD and SAL is similar and EtOH derivatives reveal over-
lapping dose-response curves.74 This is in accordance with previ-
ous studies showing that SAL stimulates DA release in the pVTA
in a inverted U-shape manner, showing a peak DA efflux (up to
300% of baseline) and a significantly low response at 3μM.33 SAL
reinforcing effects are thus mediated by activation of DA neurons
and are associated with enhanced DA levels in the ipsilateral NAc
shell since, similarly to ACD, co-infusion of quinpirole reduces
SAL reinforcing effects.29 Recent studies have postulated that the
stimulatory action of SAL on the firing rate of DA cells might be
due to activation of the opioid system.81-84 Indeed SAL is a mor-
phine-like alkaloid, and can generate motivational effects through
its binding to μ opioid receptors (MORs).80 In confirmation, pre-
clinical studies report that SAL-induced CPP, consequently to its
systemic administration, is blocked by naloxone, a nonspecific
MORs antagonist, while SAL-induced locomotor stimulation is
attenuated by the administration of b-funaltrexamine, a selective
MORs antagonist.79,80 Furthermore, CPP and EtOH intake are
completely blocked by naltrexone administration into the pVTA,
as reported recently by Quintanilla and colleagues.85 Altogether
these findings suggest that SAL addictive-like behavioural effects
are mediated through opioidergic modulation in the reward path-
way, resulting in suppression of GABAergic inhibition, and con-
current stimulation of excitatory afferents (Figure 2). Given that
EtOH acute actions on spontaneous activity of DA neurons might

be the net effect resulting from complex synaptic changes at both
inhibitory and excitatory inputs integrated with cell membrane
properties,86,87 SAL activity at the molecular level provides new
insights to look into the neurobiological basis of alcoholism and
suggests exciting avenues of future research.

Conclusions

Recurring theories in the EtOH field pinpoint the attention at
EtOH’s active metabolites/products as main players of the its
reinforcing properties. The interaction of ACD and its condensate
product, SAL, with the DA system strongly supports the develop-
ment of discrete features of addictive behaviour. However, sever-
al questions on this matter deserve further study. For instance, the
effects of ACD exposure during the developmental period are
largely unexplored. In humans, prenatal EtOH consumption may
cause several neurodevelopmental defects that could be due to
ACD formation. Indeed, EtOH can readily cross the placental
barrier and blood-brain-barrier, and in the developing rat brain,
catalase plays an important role in ACD formation. The forma-
tion of ACD in the fetal rat brain, in turn, contributes to the pro-
duction of elevated levels of SAL and other alkaloids.48 Since the
developing central nervous system is extremely sensitive to phar-
macological and environmental manipulations,88-94 increasing
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Figure 1. Schematic representation of acetaldehyde’s mechanism of action and effects. Acetaldehyde potentiates the endocannabinoider-
gic tone, thus increasing dopamine release from the ventral tegmental area. Acetaldehyde has motivational properties and behavioural
effects, measurable through operant responding, operant-conflict paradigm, conditioned place preference and free-access paradigm.
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attention must be paid to assess the consequences of perinatal
ACD and SAL exposure, that could be enduring and outlast ado-
lescence and adulthood. Given the paucity of data on this topic,
this review is also to be intended as a spur to thoroughly evaluate
ACD and SAL as strong contributors to EtOH two-step molecu-
lar activity in the developing brain, and the related addictive phe-
notypes later in life.
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