0
0
0
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Physiological deterioration in the Emergency Department: The SNAP40-ED study

Authors

Continuous novel ambulatory monitoring may detect deterioration in Emergency Department (ED) patients more rapidly, prompting treatment and preventing adverse events. Single-centre, open-label, prospective, observational cohort study recruiting high/medium acuity (Manchester triage category 2 and 3) participants, aged over 16 years, presenting to ED. Participants were fitted with a novel wearable monitoring device alongside standard clinical care (wired monitoring and/or manual clinical staff vital sign recording) and observed for up to 4 hours in the ED. Primary outcome was time to detection of deterioration. Two-hundred and fifty (250) patients were enrolled. In 82 patients (32.8%) with standard monitoring (wired monitoring and/or manual clinical staff vital sign recording), deterioration in at least one vital sign was noted during their four-hour ED stay. Overall, the novel device detected deterioration a median of 34 minutes earlier than wired monitoring (Q1, Q3 67,194; n=73, mean difference 39.48, p<0.0001). The novel device detected deterioration a median of 24 minutes (Q1, Q3 2,43; n=42) earlier than wired monitoring and 65 minutes (Q1, Q3 28,114; n=31) earlier than manual vital signs. Deterioration in physiology was common in ED patients. ED staff spent a significant amount of time performing observations and responding to alarms, with many not escalated. The novel device detected deterioration significantly earlier than standard care.

Downloads

Citations

Crossref
1
Scopus
0
Greta Barbieri, Erika Poggiali, Veronica Salvatore, Francesco Salinaro (2021)
Communicating science in the time of Coronavirus: What we have learned. Emergency Care Journal, 17(3),
10.4081/ecj.2021.10139
Findlay GP, Shotton H, Kelly K, et al. Time to intervene? NCEPOD 2012. Available from: http://www.ncepod.org.uk/2012report1/downloads/CAP_fullreport.pdf
Kause J, Smith G, Prytherch D, et al. A comparison of antecedents to cardiac arrests, deaths and emergency intensive care admissions in Australia and New Zealand, and the United Kingdom – the ACADEMIA study. Resuscitation 2004;62:275-82. DOI: https://doi.org/10.1016/j.resuscitation.2004.05.016
Griffiths JR, Kidney EM. Current use of early warning scores in UK emergency departments. Emerg Med J 2012;29:65–6. DOI: https://doi.org/10.1136/emermed-2011-200508
The Royal College of Emergency Medicine. Position statement National Early Warning Score (NEWS) for Adult Patients attending Emergency Departments 2016. Accessed 19 July 2021. Available form: https://www.rcem.ac.uk/docs/News/CEM10125-Position%20statement%20-%20NEWS%20for%20adult%20patients%20attending%20EDs%20-%20June%202016.pdf
Taenzer AH, Pyke JB, McGrath SP, Blike GT. Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology 2010;112:282-7. DOI: https://doi.org/10.1097/ALN.0b013e3181ca7a9b
Schmidt PE, Meredith P, Prytherch DR, et al. Impact of introducing an electronic physiological surveillance system on hospital mortality. BMJ Qual Saf 2015;24:10-20. DOI: https://doi.org/10.1136/bmjqs-2014-003073
Reed MJ, McGrath M, Black PL, et al. Detection of physiological deteriorationby the SNAP40 wearable devicecompared to standard monitoring devices in the emergency department:the SNAP40-ED study. Diagnostic Prognostic Res 2018;2:18. DOI: https://doi.org/10.1186/s41512-018-0040-7
Royal College of Physicians. National Early Warning Score (NEWS) 2. Accessed 20th November 2020. Accessed 20th November 2020. Available from: https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2
Drummond GB, Bates A, Mann J, Arvind DK. Validation of a new non-invasive automatic monitor of respiratory rate for postoperative subjects. Br J Anaesth 2011;107:462–9. DOI: https://doi.org/10.1093/bja/aer153
Brekke IJ, Puntervoll LH, Pedersen PB, et al. The value of vital sign trends in predicting and monitoring clinical deterioration: A systematic review. PLoS One 2019;14:e0210875. DOI: https://doi.org/10.1371/journal.pone.0210875
Fleischman W, Ciliberto B, Rozanski N, et al. Emergency department monitor alarms rarely change clinical management: An observational study. Am J Emerg Med 2020;38:1072-6. DOI: https://doi.org/10.1016/j.ajem.2019.158370
Clifton DA, Clifton L, Sandu D, et al. ‘Errors’ and omissions in paper-based early warning scores: the association with changes in vital signs—a database analysis. BMJ Open 2015;5:e007376. DOI: https://doi.org/10.1136/bmjopen-2014-007376

How to Cite

Reed, M. J., O’Brien, R., Black, P. L., Lewis, S., Ensor, H., Wilkes, M., McCann, C., & Whiting, S. (2021). Physiological deterioration in the Emergency Department: The SNAP40-ED study. Emergency Care Journal, 17(3). https://doi.org/10.4081/ecj.2021.9711