Cover Image

Anti-bacterial properties of calcium hydroxide in combination with silver, copper, zinc oxide or magnesium oxide

Hazhir Yousefshahi, Mohsen Aminsobhani, Mehdi Shokri, Razieh Shahbazi
  • Hazhir Yousefshahi
    Dental School, Aja University of Medical Sciences, Tehran, Iran, Islamic Republic of
  • Mohsen Aminsobhani
    Dental School, Aja University of Medical Sciences, Tehran, Iran, Islamic Republic of | maminsobhani@yahoo.com
  • Mehdi Shokri
    Department of Dental Biomaterials, Dental School, Shahid Beheshti University of Medical Sciences,Tehran, Iran, Islamic Republic of
  • Razieh Shahbazi
    Department of Dental Biomaterials, Dental School, Shahid Beheshti University of Medical Sciences,Tehran, Iran, Islamic Republic of

Abstract

Prevention of bacterial growth among root canal treatment sessions is a prerequisite for successful root canal treatment. The most common way to achieve this is to use calcium hydroxide in the treatment sessions. Some studies have shown calcium hydroxide inefficiency in this field. The aim of this study was to investigate and compare the effects of silver, copper, zinc oxide and magnesium oxide nanoparticles on the inhibitory effects of calcium hydroxide based on Enterococcus faecalis species. Enterococcus faecalis bacteria having 0.5 McFarland concentration were prepared. Plates containing BHI agar medium were prepared. In each plate, four wells were created and the plate was cultured using a sterile swab. Afterwards, calcium hydroxide composition of 1% and 2% concentration from silver, copper, zinc oxide and magnesium oxide nanoparticles were prepared separately, as well as the combination of calcium hydroxide with 1% silver in combination with 1% of copper, zinc oxide and magnesium oxide nanoparticles, which were then transferred to the wells. After 24 hours of incubation, the inhibition zone diameter was measured. Data were analyzed by Mann-Withney test. At 1% concentration, only the combination of copper nanoparticles with calcium hydroxide could significantly create an inhibition zone larger than calcium hydroxide alone (P value<0.5). At 2% concentration, the combination of copper nanoparticles with calcium hydroxide, and the combination of silver nanoparticles with calcium hydroxide, were significantly higher than calcium hydroxide alone (P value<0.5). The calcium hydroxide composition containing 1% silver nanoparticles in combination with 1% copper, zinc oxide and magnesium oxide nanoparticles significantly increased the growth inhibition zone more than calcium hydroxide alone. (P Value<0.5). Copper nanoparticles showed the best antibacterial properties among silver, copper, magnesium oxide and zinc oxide nanoparticles in combination with calcium hydroxide. Also, the combination of 1% of nanoparticles with each other increases antibacterial properties.

Keywords

Copper, silver, zinc oxide, magnesium oxide, growth inhibition zone, enterococcus faecalis, calcium hydroxide.

Full Text:

PDF
Submitted: 2018-05-07 21:18:07
Published: 2018-07-10 08:43:05
Search for citations in Google Scholar
Related articles: Google Scholar
Abstract views:
269

Views:
PDF
19

Article Metrics

Metrics Loading ...

Metrics powered by PLOS ALM


Copyright (c) 2018 Hazhir Yousefshahi, Mohsen Aminsobhani, Mehdi Shokri, Razieh Shahbazi

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
 
© PAGEPress 2008-2018     -     PAGEPress is a registered trademark property of PAGEPress srl, Italy.     -     VAT: IT02125780185     •     Privacy