Evaluation of radiopacity of cements used in implant-supported prosthesis by indirect digital radiography: an in-vitro study

Submitted: 10 October 2023
Accepted: 12 November 2023
Published: 1 December 2023
Abstract Views: 690
PDF: 279
HTML: 4
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

In order to help dentists in choosing the right type of cement for implant-based prostheses, the radiopacity of commonly used cements available in the market was investigated by digital radiography with PSP sensor. In the present study, temporary cements of TempBond (Kerr, Germany), TempBond clear (Kerr, Germany), Dycal (Dentsply, USA) and permanent cements of Multilink N (Ivoclar, Brazil), Panavia F 2.0 (Kurrary, Japan), Fuji plus (GC, Japan), RelyX (3M, USA), Durelon (3M, USA) were used. Four pill-like samples with 0.5 mm and 1 mm thickness and 5 mm in diameter inside the silicon index as recommended by the manufacturer were prepared for each cement. Aluminum step wedge (99% aluminum alloy) was used as control. Using digital radiography, cement and aluminum step wedge samples were radiographed. The images of cement tablets were measured by digital radiography using DFW software to check their radiopacity values. Bonferroni test and Mann-Whitney U test were used for comparison of cements. The highest radiopacity between the group of 1 and 0.5 mm thickness was related to Glass ionomer Fujiplus GC (2407±45.99) and TempBond (137.21±22.46) cement, respectively. Whereas, the lowest radiopacity among the groups was related to Clear cement. The difference between the mean radiopacities among the studied groups was statistically significant (p<0.001). Based on the results, among the available cements, Glass ionomer Fujiplus GC and TempBond cement are the most efficient for 1 and 0.5 mm thickness, respectively, and Clear cement is the least efficient cement in both groups in terms of radiopacity.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Pette GA, Ganeles J, Norkin FJ. Radiographic appearance of commonly used cements in implant dentistry. Int J Periodontics Restorative Dent. 2013 Jan-Feb;33(1):61-8. PMID: 23342348. DOI: https://doi.org/10.11607/prd.1466
Wadhwani C, Hess T, Faber T, Piñeyro A, Chen CS. A descriptive study of the radiographic density of implant restorative cements. J Prosthet Dent. 2010 May;103(5):295-302. PMID: 20416413. DOI: https://doi.org/10.1016/S0022-3913(10)60062-5
Linkevicius T, Vindasiute E, Puisys A, Peciuliene V. The influence of margin location on the amount of undetected cement excess after delivery of cement-retained implant restorations. Clin Oral Implants Res. 2011 Dec;22(12):1379-84. Epub 2011 Mar 8. PMID: 21382089. DOI: https://doi.org/10.1111/j.1600-0501.2010.02119.x
Igreţ A, Rotar RN, Ille C, Topală F, Jivănescu A. Marginal fit of milled versus different 3D-printed materials for provisional fixed dental prostheses: an in vitro comparative study. Med Pharm Rep. 2023 Jul; 96(3):298-304. Epub 2023 Jul 27. PMID: 37577020; PMCID: PMC10419681. DOI: https://doi.org/10.15386/mpr-2588
Wadhwani C, Rapoport D, La Rosa S, Hess T, Kretschmar S. Radiographic detection and characteristic patterns of residual excess cement associated with cement-retained implant restorations: a clinical report. J Prosthet Dent. 2012 Mar;107(3):151-7. PMID: 22385690. DOI: https://doi.org/10.1016/S0022-3913(12)60046-8
Schou S, Holmstrup P, Stoltze K, Hjørting-Hansen E, Fiehn NE, Skovgaard LT. Probing around implants and teeth with healthy or inflamed peri-implant mucosa/gingiva. A histologic comparison in cynomolgus monkeys (Macaca fascicularis). Clin Oral Implants Res. 2002 Apr;13(2):113-26. PMID: 11952731. DOI: https://doi.org/10.1034/j.1600-0501.2002.130201.x
Sharma V, Paliwal J, Bhansali S, Meena KK, Gupta N, Dadarwal A. Evaluation of clinical and radiographic outcome of friction fit conical abutment system in implant-supported dental prostheses: An in vivo study. J Indian Prosthodont Soc. 2022 Jan-Mar;22(1):29-37. PMID: 36510945; PMCID: PMC8884356. DOI: https://doi.org/10.4103/jips.jips_340_21
Ericsson I, Lindhe J. Probing depth at implants and teeth. An experimental study in the dog. J Clin Periodontol. 1993 Oct;20(9):623-7. PMID: 8227448. DOI: https://doi.org/10.1111/j.1600-051X.1993.tb00706.x
Pekkan G, Pekkan K, Hatipoglu MG, Tuna SH. Comparative radiopacity of ceramics and metals with human and bovine dental tissues. J Prosthet Dent. 2011 Aug;106(2):109-17. Erratum in: J Prosthet Dent. 2012 Feb;107(2):113. PMID: 21821165. DOI: https://doi.org/10.1016/S0022-3913(11)60104-2
Watts DC, McCabe JF. Aluminium radiopacity standards for dentistry: an international survey. J Dent. 1999 Jan;27(1):73-8. PMID: 9922615. DOI: https://doi.org/10.1016/S0300-5712(98)00025-6
Montes-Fariza R, Monterde-Hernández M, Cabanillas-Casabella C, Pallares-Sabater A. Comparative study of the radiopacity of resin cements used in aesthetic dentistry. J Adv Prosthodont. 2016 Jun;8(3):201-6. Epub 2016 Jun 17. PMID: 27350854; PMCID: PMC4919490. DOI: https://doi.org/10.4047/jap.2016.8.3.201
Elhelbawy NG, Ghouraba RF, Hasaneen FA. A Comparative Evaluation of the Radiopacity of Contemporary Restorative CAD/CAM Blocks Using Digital Radiography Based on the Impact of Material Composition. Int J Biomater. 2022 Feb 21;2022:4131176. PMID: 35237329; PMCID: PMC8885173.
Attar N, Tam LE, McComb D. Mechanical and physical properties of contemporary dental luting agents. J Prosthet Dent. 2003 Feb;89(2):127-34. PMID: 12616231. DOI: https://doi.org/10.1067/mpr.2003.20
Pekkan G, Hekimoglu C. Evaluation of shear and tensile bond strength between dentin and ceramics using dual-polymerizing resin cements. J Prosthet Dent. 2009 Oct;102(4):242-52. PMID: 19782827. DOI: https://doi.org/10.1016/S0022-3913(09)60163-3
Pekkan G, Ozcan M. Radiopacity of different resin-based and conventional luting cements compared to human and bovine teeth. Dent Mater J. 2012 Feb 3;31(1):68-75. Epub 2012 Jan 21. PMID: 22277608. DOI: https://doi.org/10.4012/dmj.2011-079
Rubo MH, el-Mowafy O. Radiopacity of dual-cured and chemical-cured resin-based cements. Int J Prosthodont. 1998 Jan-Feb;11(1):70-4. PMID: 9588993.
Goshima T, Goshima Y. Radiographic detection of recurrent carious lesions associated with composite restorations. Oral Surg Oral Med Oral Pathol. 1990 Aug;70(2):236-9. PMID: 2290656. DOI: https://doi.org/10.1016/0030-4220(90)90126-D
Tveit AB, Espelid I. Radiographic diagnosis of caries and marginal defects in connection with radiopaque composite fillings. Dent Mater. 1986 Aug;2(4):159-62. PMID: 3462061. DOI: https://doi.org/10.1016/S0109-5641(86)80027-6
Fonseca RB, Branco CA, Soares PV, Correr-Sobrinho L, Haiter-Neto F, Fernandes-Neto AJ, Soares CJ. Radiodensity of base, liner and luting dental materials. Clin Oral Investig. 2006 Jun;10(2):114-8. Epub 2006 Feb 24. PMID: 16498526. DOI: https://doi.org/10.1007/s00784-005-0030-3
Alhavaz A, Haghanifar S, Vakili Y, Poorsattar-Bejehmir A. Comparative study of digital radiopacity of dental cements. Caspian J of Dent Res.march.2014.3(1),28-34.
Phelps ME, Gado MH, Hoffman EJ. Correlation of effective atomic number and electron density with attenuation coefficients measured with polychromatic x rays. Radiology. 1975 Dec;117(3 Pt 1):585-8. PMID: 1188103. DOI: https://doi.org/10.1148/117.3.585
Chantler CT, Olsen K, Dragoset RA, Chang J, Kishore AR, Kotochigova SA, et al: X-Ray Form Factor, Attenuation and Scattering Tables. J Phys Chem Ref Data. 1995;24:71–643. DOI: https://doi.org/10.1063/1.555974
Hara AT, Serra MC, Rodrigues Júnior AL. Radiopacity of glass-ionomer/composite resin hybrid materials. Braz Dent J. 2001;12(2):85-9. PMID: 11445919.
Elhelbawy NG, Ghouraba RF, Hasaneen FA. A Comparative Evaluation of the Radiopacity of Contemporary Restorative CAD/CAM Blocks Using Digital Radiography Based on the Impact of Material Composition. Int J Biomater. 2022 Feb 21;2022:4131176. PMID: 35237329; PMCID: PMC8885173. DOI: https://doi.org/10.1155/2022/4131176
Turgut MD, Attar N, Onen A. Radiopacity of direct esthetic restorative materials. Oper Dent. 2003 Sep-Oct;28(5):508-14. PMID: 14531595.
el-Mowafy OM, Brown JW, McComb D. Radiopacity of direct ceramic inlay restoratives. J Dent. 1991 Dec;19(6):366-8. PMID: 1813481. DOI: https://doi.org/10.1016/0300-5712(91)90058-7
Kolarovszki B, Sándor A, Szabó P, Kopniczky J, Frank D, Nagy Á, Turzó K. Energy drinks alter the surface morphology and roughness of composites, fissure sealants and titanium: An in vitro study. Heliyon. 2022 Sep 26;8(9):e10764. PMID: 36193518; PMCID: PMC9525914. DOI: https://doi.org/10.1016/j.heliyon.2022.e10764
Gu S, Rasimick BJ, Deutsch AS, Musikant BL. Radiopacity of dental materials using a digital X-ray system. Dent Mater. 2006 Aug;22(8):765-70. Epub 2005 Dec 19. PMID: 16360848. DOI: https://doi.org/10.1016/j.dental.2005.11.004
Rasimick BJ, Gu S, Deutsch AS, Musikant BL. Measuring the radiopacity of luting cements, dowels, and core build-up materials with a digital radiography system using a CCD sensor. J Prosthodont. 2007 Sep-Oct;16(5):357-64. Epub 2007 Jun 9. PMID: 17559533. DOI: https://doi.org/10.1111/j.1532-849X.2007.00209.x
Gürdal P, Akdeniz BG. Comparison of two methods for radiometric evaluation of resin-based restorative materials. Dentomaxillofac Radiol. 1998 Jul;27(4):236-9. PMID: 9780902. DOI: https://doi.org/10.1038/sj.dmfr.4600357

How to Cite

Esfahanian, M., & Asl, A. M. (2023). Evaluation of radiopacity of cements used in implant-supported prosthesis by indirect digital radiography: an <i>in-vitro</i> study. European Journal of Translational Myology, 33(4). https://doi.org/10.4081/ejtm.2023.11940