Functional analysis of the acetic acid resistance (aar) gene cluster in Acetobacter aceti strain 1023

  • Elwood A. Mullins Department of Biochemistry, Purdue University, West Lafayette, Indiana; Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri, United States.
  • T. Joseph Kappock | kappock@purdue.edu Department of Biochemistry, Purdue University, West Lafayette, Indiana, United States.

Abstract

Vinegar production requires acetic acid bacteria that produce, tolerate, and conserve high levels of acetic acid. When ethanol is depleted, aerobic acetate overoxidation to carbon dioxide ensues. The resulting diauxic growth pattern has two logarithmic growth phases, the first associated with ethanol oxidation and the second associated with acetate overoxidation. The vinegar factory isolate Acetobacter aceti strain 1023 has a long intermediate stationary phase that persists at elevated acetic acid levels. Strain 1023 conserves acetic acid despite possessing a complete set of citric acid cycle (CAC) enzymes, including succinyl-CoA:acetate CoA-transferase (SCACT), the product of the acetic acid resistance (aar) gene aarC. In this study, cell growth and acid production were correlated with the functional expression of aar genes using reverse transcription-polymerase chain reaction, Western blotting, and enzyme activity assays. Citrate synthase (AarA) and SCACT (AarC) were abundant in A. aceti strain 1023 during both log phases, suggesting the transition to acetate overoxidation was not a simple consequence of CAC enzyme induction. A mutagenized derivative of strain 1023 lacking functional AarC readily oxidized ethanol but was unable to overoxidize acetate, indicating that the CAC is required for acetate overoxidation but not ethanol oxidation. The primary role of the aar genes in the metabolically streamlined industrial strain A. aceti 1023 appears to be to harvest energy via acetate overoxidation in otherwise depleted medium

Downloads

Download data is not yet available.

Author Biographies

Elwood A. Mullins, Department of Biochemistry, Purdue University, West Lafayette, Indiana; Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri

Graduate Student

T. Joseph Kappock, Department of Biochemistry, Purdue University, West Lafayette, Indiana

Assistant Professor

Published
2013-02-26
Supporting Agencies
US National Science Foundation
Keywords:
AarA, SixA, AarC, citric acid cycle, acetate overoxidation.
Statistics
Abstract views: 3499

PDF: 1092
Share it

PlumX Metrics

PlumX Metrics provide insights into the ways people interact with individual pieces of research output (articles, conference proceedings, book chapters, and many more) in the online environment. Examples include, when research is mentioned in the news or is tweeted about. Collectively known as PlumX Metrics, these metrics are divided into five categories to help make sense of the huge amounts of data involved and to enable analysis by comparing like with like.

How to Cite
Mullins, E., & Kappock, T. (2013). Functional analysis of the acetic acid resistance (aar) gene cluster in Acetobacter aceti strain 1023. Acetic Acid Bacteria, 2(1s), e3. https://doi.org/10.4081/aab.2013.s1.e3