
Abstract
Fresh meat is highly perishable, presenting challenges in

spoilage mitigation and waste reduction globally. Despite the
efforts, foodborne outbreaks from meat consumption persist.
Biopreservation offers a natural solution to extend shelf life by
managing microbial communities. However, challenges include

the effective diffusion of bacteriocins through the meat matrix and
the potential inhibition of starter cultures by bacteriocins targeting
closely related lactic acid bacteria (LAB). LAB, predominant in
meat, produce bacteriocins – small, stable peptides with broad
antimicrobial properties effective across varying pH and tempera-
ture conditions. This review highlights the recent advances in the
optimization of bacteriocin use, considering its structure and mode
of action. Moreover, the strengths and weaknesses of different
techniques for bacteriocin screening, including novel bioengineer-
ing methods, are described. Finally, we discuss the advantages and
limitations of the modes of application of bacteriocins toward the
preservation of fresh, cured, and novel meat products.

Introduction
Meat is a source of high-quality proteins, minerals, and vita-

mins (Geiker et al., 2021). However, it is especially prone to
spoilage, as it undergoes microbial (e.g., microbiological
spoilage), chemical (e.g., autolytic enzymatic reactions), and phys-
ical (e.g., slime and liquid formation) deterioration; in fact, esti-
mates show that as much as 23% of the annual production in the
meat sector is lost and wasted (Luong et al., 2020; Odeyemi et al.,
2020; Karwowska et al., 2021).

Regarding the safety of meats, recent cases (2016-2021) of
foodborne outbreaks in the European Union have been linked to
the consumption of contaminated meats, for instance, with
Salmonella spp. (n=289), Clostridium perfringens (n=102),
Staphylococcus aureus toxins (n=34), and Listeria monocytogenes
(n=17), resulting in a total of 1363 hospitalizations and economic
losses of up to US$90 billion annually (Scharff, 2020; EFSA,
2023). Research on meat preservation considers not only the exten-
sion of the product’s organoleptic features but also its microbiolog-
ical safety (European Commission, 2005 - EC No. 2073/2005). In
the domain of biopreservation, natural or controlled microbial
communities, and their antibacterial products are used as an
approach for controlling microbial growth. An integral component
of the initial microbial community of meat is lactic acid bacteria
(LAB), which rapidly develops under chill-stored, post-processed,
and vacuum-packed/modified atmosphere conditions (Nauman et
al., 2022). LAB are classified as Gram-positive, catalase-negative,
anaerobic, with a varied morphology (rods or cocci), and play a
crucial role in fermentation. Moreover, LAB can be used as bio-
control agents by the generation of metabolites with antimicrobial
properties against pathogens, including organic acids (e.g., lactic
acid, acetic acid), short-chain fatty acids, proteases/peptidases, and
bacteriocins (Ibrahim et al., 2021). This review highlights the
recent advances in the optimization of bacteriocin use, considering
the bacteriocin’s structure and mode of action. Moreover, the
strengths and weaknesses of different techniques for bacteriocin
screening, including novel bioengineering methods, are described.
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Finally, we discuss the advantages and limitations of different bac-
teriocins’ modes of application toward the preservation of fresh,
cured, and novel meat products.

General overview
Bacteriocins are small peptides synthesized in the ribosome

and can be categorized into four groups, according to their size,
structure, and function: class I or lantibiotics (<5 kDa), class II
(<10 kDa), class III or bacteriolysins/non-lytic (>30 kDa), and
class IV (reclassified as bacteriolysins) (Simons et al., 2020;
Barcenilla et al., 2023). These peptides play a crucial role in the
competition for colonization sites and are able to influence the
dynamics of the microbiome (Umu et al., 2017). For instance, bac-
teriocinogenic LAB inhibit target bacteria by interacting with the
negatively charged cell membrane, a process mediated by their
cationic and amphiphilic motifs (Lei et al., 2019; Heilbronner et
al., 2021).

Mode of action
The bioactivity of bacteriocins can be either of a narrow spec-

trum (if the inhibition is exclusive to species that are closely relat-
ed) or a broad spectrum, which is the case for lantibiotics
(Woraprayote et al., 2016); in addition to presenting either bacte-
riostatic (inhibition) or bactericidal (killing) effects (Negash and
Tsehai, 2020). The general mode of action of these antimicrobial
peptides is given by their specialized functional domains: substrate
binding site, translocation, and catalytic site (Gillor et al., 2008).
The binding domain attaches to specific receptors on bacterial
membranes, the translocation domain interacts with specific pro-
teins integral to the cell membrane, and the effector domain exe-
cutes lethal action: DNA degradation and/or induction of pores in
the membrane (Davidson et al., 2008).

Nisin
Lantibiotics act by blocking the lipid II cycle (Figure 1) (Hsu

et al., 2004), preventing correct cell wall synthesis, and inducing
pore formation by interacting with the outer membrane (Diep et
al., 2009). Nisin (grey) is composed of 34 amino acids and has a
positive charge (+4), which allows it to interact with the anionic
lipid II that constitutes the peptidoglycan layer in the bacterial cell
membrane. The peptidoglycan is formed by a chain composed of
N-acetylglucosamine (green), N-acetyl muramic acid (MurNAc;
red), a pentapeptide (not shown), two pyrophosphate molecules
(blue), and a prenyl chain (black).

The lipid II mediated pathway of nisin starts with the recogni-
tion of lipid II MurNAc and isoprene units. The dehydrobutyrine
and α-aminobutyric acid of nisin then establish a hydrogen bond
with the pyrophosphate molecules of lipid II. The assembly of
nisin occurs without a canonical secondary structure, where two
lanthionine rings fold to form a cage-like structure with the nisin
backbone amides and the lipid II pyrophosphate, with a molar ratio
of 8:4 for nisin and lipid II, respectively. Finally, the cage-like
structure induces pore formation, resulting in disruption of the cell
membrane.

Pediocin
On the other hand, class II or non-lantibiotic bacteriocins

(Figure 2), divided into four subclasses, utilize the mannose phos-
photransferase system (man-PTS) to permeabilize the membrane,
disrupt proton motive force, and deplete adenosine triphosphate
pools (Diep et al., 2007). Class IIb bacteriocins activity depends on
two-component, α and β subunits, which fold into α-helical struc-
tures and insert themselves into target bacterial membranes to alter
their permeability, resulting in ion leakage and cell death (Nissen-
Meyer et al., 2011; Proutière et al., 2023).

Pediocin PA-1 is composed (Figure 2) (Zhu et al., 2022) of a
hydrophilic and cationic N-terminal (brown) which consists of a
three-stranded-β-sheet (containing the pediocin-box) linked by
disulfide bridges (black). The region between N- and C-terminal is
a flexible region composed of Asp/Asn in residue 17. The C-termi-
nal is hydrophobic and is organized in an α-helix (blue), coupled
with a hairpin-like tail (light pink). 

The N-terminal β-sheet of pediocin PA-1 links with the extra-
cellular man-PTS core domain (red). Normally, this transporter
protein composed of a v-motif (green) and a core domain (red)
switches from position depending on the transport of mannose.
The change in conformation occurs by an elevator movement. 

The binding occurs with the effector domain of pediocin PA-1
(pediocin-box and positively charged Lysn II and His 12) and the
core domain of the man-PTS (Val 7, Cys 9, Cys 14, Tyr 3) estab-
lishing a linkage that blocks the elevator movement of man-PTS,
with a molar ratio of pediocin PA-1 and man-PTS at 3:3. The hair-
pin-like tail of pediocin makes pi-stacking interactions with Trp 18
(white) of man-PTS and stabilizes the pediocin-manPTS structure,
leading to disruption of the cell membrane (Zhu et al., 2022).

Screening of bacteriocins
The screening of bacteriocins can be divided into three stages:

search for the presence of bacteriocin-encoding genes, evaluation
of bacteriocin expression, and assessment of the bacteriocin
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Figure 1. Nisin mode of action.

Figure 2. Pediocin-PA-1 mode of action.
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antimicrobial activity. For cultivable bacteria, the search for a bac-
teriocinogenic LAB strain begins with the isolation of
autochthonous strains from the meat matrix. Then, the bacteriocin-
encoding genes can be amplified by polymerase chain reaction
(PCR), and their expression is evaluated in real-time using real-
time quantitative PCR (RT-qPCR). After purification, the bacteri-
ocin’s antimicrobial activity can be assessed by antagonism tests
(Figure 3) against indicator microorganisms.

For instance, the in vitro assessment of bacteriocins or bacteri-
ocin-like substances entails methodologies such as agar well diffu-
sion (Bungenstock et al., 2020), agar spot (Moraes et al., 2010;
Selman et al., 2021), turbidimetric (Yang et al., 2018; Piazentin et
al., 2022), enzyme-linked immunosorbent assay (Martínez et al.,
2000; Surati, 2020) and RT-qPCR (Dortu et al., 2009; Balutis,
2014; Wan et al., 2015). Moreover, the bacteriocin does not have
an antimicrobial effect on the producer strain. These mechanisms
are constituted of self-immunity proteins that competitively antag-
onize the putative bacteriocin receptors by anchoring the mem-
brane surface (antagonism), being embedded in the membrane
(repulsion), or producing metalloproteases that degrade the bacte-
riocin (Deegan et al., 2006; Bastos et al., 2015). 

Culture-based methods for assessing antimicrobial activity
mostly relying on outdated protocols persist in being the most used
(Balouiri et al., 2016), despite recent advancements in genomics,
namely the whole genome sequencing (WGS), RNA sequencing
(RNA-seq), and PCR-based techniques. While agar-based tests
offer cost-effectiveness and simplicity, particularly at an initial
sample screening, they lack the depth necessary to fully explore a
strain’s bacteriocinogenic potential. Moreover, utilizing different
agar-based tests within a single study may introduce intra-study
variability and errors due to differing experimental conditions and
subjective interpretation of results (Hossain, 2024).

In the case of unculturable microbes, the use of metagenomics
tools is utilized since it is estimated that 99% of microorganisms
are not possible to culture in isolation (Ayrapetyan and Oliver,
2016). The DNA of the food sample is extracted, followed by
library preparation and then sequencing of all of the DNA present
in the sample. This sequencing data enables the visualization of the
microbial community composition within the food matrix, provid-
ing insights into the relationship between meat preservation and
16S rRNA diversity analysis as the microbiota continually changes
during storage (Dorn-In et al., 2024). 

Shotgun metagenomics enables the discovery of the microbial
profile of samples, allowing for the detection of spoilage and
pathogenic organisms, as well as differentiation at the strain level
(Srinivas et al., 2022). This method can be used to monitor the sup-
ply chain for agents of concern, providing valuable insights that
incentivize food manufacturers to invest in preventative control
measures (Imanian et al., 2022).

The development of new in silico techniques has made it pos-
sible to analyze bacteriocins in a high-throughput manner
(Nedyalkova et al., 2024). In contrast with classical assays for
antimicrobial activity determination, the current methods for pre-
dicting bacteriocin gene clusters are high-speed and can be auto-
mated. BAGEL is a web mining tool that uses whole-genome
sequence data to analyze the technological potential of bacterial
strains (van Heel et al., 2018). 

Mining genomes with automated software (Wosinska et al.,
2022; Sowers et al., 2023) for the identification of bacteriocins
reveal gene loci that can be functional or not. The data generated
from this type of analysis has the potential to be exploited by bio-
engineering, including de novo design of novel bacteriocins (Deo
et al., 2022; Kordi et al., 2024). 

The recent increase in RNA-seq data, which describes the
presence and quantity of RNA in a biological sample, demonstrates
that RNA-seq can be used to follow the survival of target bacteria
in the presence of the bacteriocin, by measurement of the expres-
sion of genes in food systems. Moreover, it is useful for analyzing
the influence displayed by various environmental conditions on
gene expression and fine-tuning them to achieve optimal condi-
tions (Yang et al., 2024). 

Representative genomes on the NCBI platform have been used
in comparative genomics to predict peptide expression and secre-
tion by the bacteria (Marques et al., 2023). These tools in combi-
nation with molecular dynamics analysis allow automated assess-
ment of the binding mechanism of action performed by bacteri-
ocins (Walsh, 2017; Leslie et al., 2021; Rodrigues Blanco et al.,
2022;). The computational tools include docking software and
three-dimensional structure modeling of the putative peptides
(Frederix et al., 2018; Nain et al., 2020; Xin et al., 2020; Das et al.,
2021; Palmer et al., 2021; Krishnamoorthi et al., 2022; Wang et
al., 2023). 

The development of these novel methodologies enables the
fast discovery of structural and functional characteristics of specif-
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ic amino acid residues, which can be associated with binding sites
in the bacterial membrane (Bindu and Lakshmidevi, 2021; Chen et
al., 2022; Marques et al., 2023; Oftedal, 2023). By understanding
the mode of action of bacteriocins, given the varied nature of their
structures, strategies to enhance and potentiate the bacteriocin’s
antimicrobial activity can be further developed (Amarh et al.,
2023). Lantibiotics, for instance, are subjected to post-translational
processing (Figure 4) (Hsu et al., 2004), featuring compact struc-
tures with modified amino acids (e.g., lanthionine bridges, β-
methyllanthionine, and dehydrated amino acids) and thioether ring
structures. In the case of nisin, its structure comprises a globular
chain consisting of lanthionine and dehydrated serine residues.
These elements undergo post-translational modifications and pro-
teolytic cleavage during the peptide processing phase, contributing
to the unique structure of nisin.

Lactocin S, however, is prone to oxidation due to the sulfide
bonds in its α and β rings, which results in its inactivation; there-
fore, the synthesis of this bacteriocin occurs under anaerobic con-
ditions, which could be improved by replacement of the sulfide
bonds with hydrocarbon chains in analogs of lactocin S leading to
more oxidative stability (Ross et al., 2012; Tsukano et al., 2024).

Lantibiotics active sites include the amino acid residues such
as the catalytic site and the substrate binding site, with the
F(ND)L(DEN)(LVI) motif (Figure 5) being conserved across dif-
ferent bacteriocins from this class. There is a gap in the literature
on the correlation between the conserved motifs of bacteriocins
and their mode of action considering their 3D structure and its
influence on the bacteriocin’s activity. Figure 5 depicts predicted
3D structures produced by the α Fold algorithm and visualized
with Chimera X (Jumper et al., 2021; Varadi et al., 2022; Meng et
al., 2023;), N- and C-terminus indicated in the figure, region high-
lighted in red indicates the conserved region FNDLV, the con-
served region of the three peptides appear differently across the
space on the 3D structure format. 

Class IIa bacteriocins are characterized by a conserved
sequence at the N-terminal (YGNGV), also known as pediocin-

box (Figure 6) (Waterhouse et al., 2009), a sequence related to
strong anti-listerial activity first described in pediocin PA-1 (Cui et
al., 2012). Class IIb is composed of two short chains. Class IIc are
circular bacteriocins that lack the leader peptide sequence and are
dependent on the general secretion pathway (sec) for transporta-
tion across the cytoplasmic membrane (Perez et al., 2014; Choi et
al., 2023). Class IId bacteriocins are typically constituted of NGY
residues at the N- terminus and central YxVTK motifs (Yoo et al.,
2023); this class covers the remaining single-peptide and non-
pediocin-like bacteriocins (Iwatani et al., 2011).

Class II (pediocin-like) suffers cleavage of a leader peptide
(Figure 6) (Waterhouse et al., 2009) in the N- terminus in order to
turn into a mature bacteriocin, which can be seen from the repre-
sentation of class IIa bacteriocins isolated from meat aligned by
the CLUSTAL W algorithm (Thompson et al., 1994; Drider et al.,
2006; Lee and Kim, 2011). Sequences were fetched from UniProt.
The pediocin-box is highlighted in a black square, hydrophobic
(blue), positive charge (red), polar (green) glycine (orange), pro-
lines (yellow), and aromatic (cyan) residues.

3D primary structures of class IIa bacteriocins (Figure 7), gen-
erated using the α fold algorithm and visualized with Chimera X,
show that the conserved region YGNGV exhibits distinct spatial
arrangements within the 3D structures of the different class IIa
bacteriocins. This variation suggests that although the sequence is
conserved, the spatial positioning and orientation of this region can
differ significantly from one peptide to another (Figure 7). Such
differences in the three-dimensional conformation could influence
how these bacteriocins interact with their target receptors, poten-
tially affecting their antimicrobial activity and specificity (Jumper
et al., 2021; Varadi et al., 2022; Meng et al., 2023).

Bacteriocins exhibit robust resistance to high temperatures and
low pH due to their specific amino acid composition, a high num-
ber of disulfide bridges, and ion pairs (Szilágyi and Závodszky,
2000). The solubility of these peptides increases at low pH due to
a net charge change that facilitates greater diffusion through bacte-
rial membranes (Yu et al., 2023). Lantibiotics, in particular,
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Figure 4. The amino acid composition of nisin.

Figure 5. Lantibiotics three-dimensional primary structures.  A) Nisin A (P13068); B) nisin Z (P29559); C) lactocin S (P23826).
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demonstrate strong resistance under extreme conditions.
Additionally, owing to their proteinaceous nature, bacteriocins are
susceptible to proteolytic enzymes—such as pancreatin complex,
trypsin, and chymotrypsin—found in the gastrointestinal tract
(Aljohani et al., 2023). The characteristic nature of bacteriocins
can be determined by testing their sensitivity to an array of prote-
olytic enzymes, producing a pattern of protease sensitivity
(Bromberg et al., 2004).

WGS has made it possible to identify conserved open reading
frames and understand the organization of gene loci encoding the
bacteriocin and its immunity genes, in addition, it allowed to pre-
dict the promoter and terminator sequence of the peptide from the
DNA data by predicting the RNA-polymerase binding motif,
which can be useful for improving expression of bacteriocin
encoding genes (Ruiz Puentes et al., 2022).

Promotion of bacteriocin synthesis can be obtained by consti-
tutive expression of genes or by regulating gene expression as a
response to the metabolite production from competing strains

(González and Keshavan, 2006; Ng and Bassler, 2009). The bacte-
riocin synthesis gene clusters have been found to be located in the
chromosome and in mobile elements such as plasmids and/or
transposons (Achemchem et al., 2005; Lahiri et al., 2022). These
clusters encode genes for the expression of the bacteriocin itself,
enzymes, and self-immunity regulators of bacteriocin production
and are organized in operons and/or regulons that undergo rapid
evolution and are susceptible to high rates of horizontal transfer
and spontaneous loss (Mørtvedt and Nes, 1990; Noda et al., 2018;
Almeida-Santos et al., 2021). 

A series of databases have been developed specifically for
information on bacteriocins, for instance, the open-access database
BACTIBASE (http://bactibase.hammamilab.org) with information
on bacteriocins based on published literature extracted from
PubMed (Hammami et al., 2010). LABiocin (https://labiocin.univ-
lille.fr/) is a database of LAB bacteriocins containing 517 entries
extracted from literature searches on Scopus, PubMed/Medline,
and ScienceDirect with articles published up until 2017 (Kassaa et
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Figure 6. Representation of class IIa bacteriocins isolated from meat aligned by the CLUSTAL W algorithm and visualized in Jalview.

Figure 7. 3D primary structures of class IIa bacteriocins. A) Pediocin PA-1 (P29430); B) divergicin 750 (Q46597); C) carnobacteriocin
A (P38578).
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al., 2019). These databases provide valuable information on struc-
ture, amino acid sequence, gene sequence, purification, and
physicochemical characteristics of bacteriocins; homology search
is an additional feature comprised in these databases which allows
for sequence alignment using algorithms such as BLAST
(McGinnis and Madden, 2004).

Meat application
Gram-positive bacteria, particularly LAB, are the most studied

source of bacteriocins from the meat environment (da Costa et al.,
2019). The bacteriocins isolated from LAB in meat and meat prod-
ucts belong to different species, for instance, Lactobacillus sakei
from vacuum-packed lamb meat (Holck et al., 1994),
Carnobacterium piscicola from spoiled meat (Jack et al., 1996),
Leuconostoc gelidum from processed packaged meat (Hastings et
al., 1991), Leuconostoc carnosum from packaged meat (Raimondi
et al., 2021), Enterococcus faecium from dry fermented sausages
(Casaus et al., 1997), Carnobacterium divergens from vacuum-
packed meat (Zhang et al., 2019) and Carnobacterium maltaromi-
cus from vacuum-packed chilled meat (Quadri et al., 1994). 

In the last 30 years, bacteriocins have been screened and
applied in meat to control microbial decay and spoilage, acting as
natural inhibitors and extending the shelf life of meat products (da
Costa et al., 2019). However, there are still challenges associated
with this approach, including the variability in peptide function
depending on the nature of the meat matrix – especially in more
fibrous matrices, effective inhibition of target microorganisms,
resistance development, and compatibility with surrounding LAB
(Sionek et al., 2024).

Regarding the nature of the meat matrix, challenges arise when
applying bacteriocins in meat products primarily due to the
hydrophobic nature of the meat and its instability at neutral pH, its
interaction with phospholipids derived from meat products and
other emulsifiers that make it difficult to distribute and solubilize
the bacteriocin at pH values higher than 6.0. For instance, in fresh
meat, three glutathione molecules are able to conjugate with one

nisin molecule resulting in activity loss. However, it is possible to
regulate the amount of free sulfhydryl groups present in the matrix,
such as with the process of cooking the meat which reduces the
free sulfhydryl groups and prevents the formation of the nisin-glu-
tathione complex (Rose et al., 2002). 

Strains resistant to a specific class of bacteriocins express
immunity genes that confer protection against antimicrobial pep-
tides from different classes, for instance, nisin resistant strain of L.
monocytogenes has been reported to show cross-resistance to
pediocin PA-1 and leuconocin S (Crandall and Montville, 1998;
Darbandi et al., 2021). 

To overcome the resistance development related to bacteri-
ocins in food systems, it is advisable to apply a combined strategy
of peptides in multi-hurdle strategies, for instance, in combination
with additives, pH and atmosphere control, recipe modifications
with spices and condiments, natural extracts and essential oils as
ingredients (Kaur et al., 2013; Soltani et al., 2021).

When classifying bacteriocins isolated from fresh and pro-
cessed meat products, two main classes based on biochemical
structure emerge: lantibiotics and pediocin-like peptides
(Woraprayote et al., 2016). There are different methods regarding
their practical application as biocontrol agents (Figure 8) and each
comes with its set of advantages and disadvantages; for instance,
crude preparations are tasteless, colorless, and odorless, however,
their activity may be limited by a narrow spectrum reach, limited
diffusion in solid matrices, and cross-resistance generation
(Morata, 2015; Urso et al., 2006). In the next section, we describe
the types of bacteriocin applications regarding meat preservation.

Mixed starters
The use of LAB as inoculum is the most commonly used mode

of application for preservation of foodstuffs. For meat preserva-
tion, bacteriocins can be applied as an inoculum of pure or mixed
cultures (Baillo et al., 2023), as a crude bacteriocin preparation
(Xin et al., 2023), and as a purified or semi-purified formulation
(da Costa et al., 2019). 

A selection of two autochthonous LAB strains (6.3 log CFU/g)
isolated from spontaneously fermented Spanish sausages
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Figure 8. Diagram of lactic acid bacteria biofilm and bacteriocin for different kinds of applications in the processing and conservation of
meat and meat products.
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(salchichón) – Lactiplantibacillus paraplantarum BPF2 (producer
of leucocin K) and P. acidilactici ST6 (producer of pediocin PA-1)
were used as starter and reduced levels of rancidity in aroma and
taste and improved the intensity and the persistence of the
sausage’s characteristic flavor (García-López et al., 2023). 

Commercial bacteriocin products such as Nisaplin© (Aplin and
Barrett Ltd.) and Bactoferm© (Chr. Hansen AS) often consist of a
mixture of crude preparations and organic acids in bioactive pow-
der form. These products offer a mix of lyophilized starters for use
in meat processing industries, such as for the production of salami,
pepperoni, dry and cured meats, which are frequently used com-
bined in multi-hurdle strategies with curing, drying and smoking
preservative methods (Soltani et al., 2021). 

Traditional Iberian cold-smoked fermented sausages under-
went testing to assess the antilisterial effect of Bactoferm F-LC©.
While Bactoferm F-LC© exhibited bacteriostatic activity at 10ºC,
L. sakei CTC494 showed a more pronounced and rapid inhibition
of Listeria. This resulted in a significant reduction of the pathogen
by 2 log counts (Ortiz et al., 2014). 

The application of mixed starters is beneficial because it com-
bines strains that shorten fermentation time with those that
enhance the meat’s organoleptic properties. Additionally, strains
that produce antimicrobial metabolites can be included to combat
hazardous and pathogenic bacteria, thereby increasing the food’s
microbial shelf life.

However, compatibility between strains remains a significant
issue, as the antimicrobial metabolites produced by biocontrol
strains can be detrimental to the survival of strains promoting fer-
mentation. Therefore, the choice of strains must consider their
competitiveness with surrounding bacteria, the expression levels
of bacteriocin synthesis, and their compatibility with the ferment-
ing culture (Zacharof and Lovitt, 2012).

Pure culture
A novel multi-hurdle strategy was developed to extend the

shelf life of the Portuguese fermented sausage alheira, combining
mild high-pressure processing (300 MPa, 5 min at 10ºC), 0.1%
(v/w) Pediococcus acidilactici (producer of pediocin PA-1), and
0.1% (v/w) phage Listex. This approach displayed no significant
differences in color, texture, or lipid peroxidation between unpro-
cessed and minimally processed samples (Komora et al., 2023). In
this study, homogenization was manually performed by gently
massaging the sample for approximately 3 minutes, which did not
impact the texture. Although the acidifying capacity of LAB can
increase the firmness of sausages, the selected LAB in this case
was not a strong acidifier, which may explain why the texture
remained unchanged.

In contrast, The E. lactis Q1, producer of enterocin P, added as
a pure culture (107 CFU/g) on raw beef reduced L. monocytogenes
counts by 6 log units after 1 week of cold storage and improved the
sensorial characteristics such as color, odor, and appearance, espe-
cially since Enterococci are good acidifiers, particularly in meat
products (Ben Braïek et al., 2020). When comparing mixed and
pure cultures, mixed cultures offer greater advantages due to their
diverse LAB, which can be fine-tuned for better product quality.
Moreover, while pure LAB cultures are effective in reducing
pathogen growth in meats, their efficacy is enhanced when used
alongside other hurdle strategies.

Crude preparation
The application of the peptide (1280 AU/g) onto the surface of

ham resulted in a 1.74 log reduction of L. monocytogenes counts

(p<0.05); therefore, potentially increasing the ham shelf life to 1
month in refrigerated storage (4ºC). Incorporating the peptide in
the meat paste produced an inhibition of background spoilage bac-
teria resulting in significantly lower counts (p<0.01). However, L.
monocytogenes strains were reported to develop resistance to plan-
taricin UG1 in subsequent generations (Enan, 2006).  

A combination of lactocin and high hydrostatic pressure treat-
ments increased L. monocytogenes cell death in chilled vacuum-
packed pork loin slices (Dallagnol et al., 2017) by a 6 log CFU/g
reduction. By applying 200 AU/mL of the pure bacteriocinogenic
culture in the salami batter, L. monocytogenes was reduced by 2
log CFU/g (de Souza Barbosa et al., 2015).

Pediocin PA-1 reduced the counts of L. monocytogenes inocu-
lated in raw chicken meat from 5 log CFU/g to 3.8 log CFU/g
when stored at 4 ºC for 1 month, however, re-growth was observed
after this period, which could be due to the actions of proteases
derived from the meat (Kiran and Osmanagaoglu, 2014). 

Choosing between a pure culture of bacteriocin-producing bac-
teria and a crude bacteriocin preparation involves a nuanced
assessment of their respective advantages and disadvantages. A
pure culture offers the benefit of continuous bacteriocin produc-
tion, potentially increasing antimicrobial activity over time and
reducing initial preparation costs. However, using live bacteria can
lead to compatibility issues, where different strains may inhibit
each other’s growth and compete for nutrients, resulting in incon-
sistent efficacy. Additionally, regulatory concerns arise with live
cultures, particularly in food applications, due to potential health
risks and spoilage.

In contrast, a crude bacteriocin preparation provides pre-
dictable and controlled antimicrobial effects, as the activity of the
bacteriocins is well-characterized and targeted against specific
bacteria. This method bypasses compatibility issues and is gener-
ally more acceptable from a regulatory perspective. However, the
process of purifying bacteriocins is labor-intensive and costly, with
challenges in achieving effective concentrations across different
food matrices and target microorganisms. Moreover, maintaining
the stability of crude bacteriocin preparations requires careful han-
dling and storage. Ultimately, the choice depends on the specific
application, balancing cost, regulatory considerations, and the
need for precise antimicrobial activity.

Encapsulation
Challenges with the bacteriocin adsorption in the matrix can be

addressed by using immobilized preparations, such as encapsula-
tion on gel coatings, films, silica particles, or liposomes (Gálvez et
al., 2007). Encapsulation of bacteriocins involves incorporating
these antimicrobial peptides into a protective matrix or carrier to
enhance their stability, control their release, and improve their
effectiveness in various applications.

The application of encapsulated bacteriocins combined with
citrus extract, and thyme essential oil led to a synergistic antimi-
crobial activity for meatballs protection against L. monocytogenes
and all tested LAB; however, there was no effect observed on the
inhibition of S. Typhimurium (Sarmast et al., 2023). Moreover, the
anti-listerial activity of cell-adsorbed bacteriocins combined with
oregano essential oil had a synergistic effect on the reduction of L.
monocytogenes counts and delayed the growth rebound by 2 weeks
in pork meat during storage at 4 ºC (Ghalfi et al., 2007).  

Smart packaging represents an advanced approach to packag-
ing design, integrating technology to augment the functionality,
safety, and user experience of packaged products. A recent
advancement in this domain is the incorporation of bacteriocins
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into packaging materials, utilizing natural antimicrobial agents to
enhance food safety and preservation. Typically, this method
employs crude bacteriocin preparations rather than inoculum.
Nevertheless, significant gaps remain in the current field, particu-
larly concerning the varying characteristics of different matrices
for the establishment of effective smart packaging solutions.

Edible films
For instance, whey protein-based edible films, enriched with

the cell-free supernatant of Lactobacillus sakei strains were
applied in beef, resulting in a decrease from 3.5 log + 0.2 CFU/g
to 0.3 + 0.1 log CFU/g of Escherichia coli counts after 36 h of
refrigerated storage. Moreover, sensory evaluation of grilled beef
wrapped with the antimicrobial films demonstrated no significant
differences in flavor and color as assessed by the panelists, the
overall acceptability was high (Beristain-Bauza et al., 2017). 

Polythylene-based films
A plantaricin solution applied in an active package made with

polyvinylidene chloride film in pork fresh meat inhibited L. mono-
cytogenes growth by 1.4 log CFU/g after 7 days of cold storage
(Xie et al., 2018). Plantaricin BM-1 solution was used to soak
polyethylene-based films applied in meat artificially inoculated
with L. monocytogenes and exerted antimicrobial activity that
inhibited the pathogen growth during storage for 120 days at 25ºC
(Zhang et al., 2017).

Curvaticin 32Y produced by L. curvatus 32Y isolated from dry
sausages has been shown to reduce viable counts of L. monocyto-
genes by 1 log when applied in a polythene film by soaking, spray-
coating as a preservative for artificially inoculated pork steaks
(Mauriello et al., 2004). Moreover, in bioactive packaging made of
sawdust particles and poly lactic acid biocomposite film, the
adsorption of pediocin PA1-AcH enhanced raw sliced pork meat
protection against L. monocytogenes, with counts reduced by ~2
log units after storage at 4ºC for 14 days (Woraprayote et al.,
2013).

Cellophane coating
Nisin has been shown to have greater antimicrobial potential in

meat preparation when used in combination with organic acids and
salts; for instance, nisin reduced the total aerobic bacteria counts in
0.1 log CFU/g from veal meats when applied in a cellophane coat-
ing packaging and extended the shelf life of chopped meat under
refrigerated storage (Guerra et al., 2005).

Alginate matrix
As a component in antimicrobial packaging, nisin had an

inhibitory effect against microbial decay and extended the shelf
life of refrigerated chicken meat up to 15 days more than the con-
trol when applied and incorporated in an alginate matrix (Carrión
et al., 2023). A packaging composed of alginate films and contain-
ing immobilized viable enterocin-producing E. faecium Smr18
reduced S. Typhimurium counts by 3 log CFU/g in chicken meat
after 34 days at cold storage (Rashid et al., 2023).

Cultivated meat
Meat grown from animal cells in a laboratory setting is called

‘cultivated meat’ (CM). CM appears as a new solution to several
safety issues with livestock farming such as the zoonotic transfer

of viruses and infection through human consumption (Ramani et
al., 2021). The development of CM is dependent on the retrieval of
animal cells by biopsy, creation of a bank of cells, growth, and dif-
ferentiation by reprogramming stem cells into skeletal muscle
cells, harvesting the cells, and processing them into tissues. 

CM meat can become contaminated by bacteria, fungi, and
viruses, which are managed by the addition of antibiotics during
cell growth, as well as by the addition of cryoprotectants during
cell storage. Moreover, the risk for contamination during further
downstream processing is expected to be similar to the case of tra-
ditional meat products (Broucke et al., 2023). 

CM production systems are considered to be more sustainable
and safer in comparison to conventional meat production systems,
but they may have a completely different risk profile; such a risk
coming from antibiotic application in vitro to promote the growth
of cells still consists of a gap in the field and much attention would
require to be paid to the safety of added substrates and other com-
pounds of the culture medium to the human health. 

As it will be easier to keep control of pathogenic contamina-
tion in cultured meat production, CM is associated with fewer risks
with respect to microbial contamination. The application of LAB
as a starter for CM production is expected to influence the final
product similarly than it already affects the meat that incorporates
starter cultures, having a positive effect on organoleptic features
and on microbial safety (Kolodkin-Gal et al., 2024).

Conclusions and future perspectives
Fresh meat is particularly susceptible to spoilage, posing a sig-

nificant challenge in reducing losses and waste associated with
meat and its products on a global scale. Furthermore, despite con-
certed efforts, foodborne outbreaks linked to the consumption of
meat products persist as an unresolved issue. 

In this context, biopreservation emerges as a natural alternative
for extending the shelf life of meat products by managing their
inherent microbial communities; however, proper diffusion of the
bacteriocin through the meat matrix remains a challenge, in addi-
tion to the inhibition by the bacteriocins against closely related
LAB, which could cause loss of starter culture effectiveness.

LAB are the dominant group present in meat and produce a
variety of metabolites with antimicrobial effects. Bacteriocins are
secondary metabolites produced by LAB with antimicrobial prop-
erties, these small peptides are stable in extreme temperatures and
pH. While culture-based methods remain prevalent in assessing
antimicrobial activity due to their cost-effectiveness and simplici-
ty, they often rely on outdated protocols that may not fully explore
the bacteriocinogenic potential of strains. Recent advancements in
genomics, such as WGS, RNA-seq, and PCR-based techniques,
offer more comprehensive insights into antimicrobial mechanisms.
Moreover, computational tools, including docking software and
three-dimensional structure modeling, now enable automated
assessment of bacteriocin binding mechanisms. This advanced
understanding of bacteriocin structures and their modes of action
holds promise for developing strategies to enhance and optimize
their antimicrobial efficacy in practical applications.

The development for higher efficiency of bacteriocin diffusion
from packaging surfaces or application sites into meat, considers
multiple factors, including meat texture and the thoroughness of
mixing between the bacteriocin and the meat, which significantly
influence homogeneous distribution within the meat matrix. The
choice of application method is influenced by factors such as the
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complexity of the food matrix, scalability, and cost-effectiveness
of production. Looking forward, advancements in 3D printing and
CM could profit from integrating LAB and bacteriocins to improve
their safety and functionality. Continued research into bacteriocins
is crucial for advancing meat safety and expanding functional meat
product offerings in the future.
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