Supplementary materials

Table 1. Study outcome and intervention summary for aerosol contamination mitigation and
transmission

Ν	Article	Research	Sample	Intervention or	Research Results
0	Title	Method		exposure	
	Personal Pr	otective Equip	oment		
1	MacIntyre et al (2014)	Randomize d Controlled Trial (RCT)	Hospital healthcare workers	N95 respirators and medical masks	Both medical masks and respirators are effective in reducing bacterial colonization and co-infection in the upper respiratory tract among healthcare workers.
2	Asadi et al (2020)	Experiment al study	10 volunteers (6 male and 4 female, aged between 18 to 45 years	Surgical masks, KN95 respirators	Surgical masks and unvented KN95 respirators reduce outward particle emission by 90% and 74%, respectively, during speaking and coughing without fit testing.
3	Sterr et al (2021)	In vitro experiment al study	Dummy head	Cloth masks, non- certified face masks, certified medical face masks, respirator masks (KN95)	The medical face masks effectively protect the wearer from exposure to aerosols, showing the importance in reducing the risk of respiratory infections.
4	Armand et al (2022)	Laboratory experiment al study	Anatomical replica of adult upper airways	Medical face masks	Medical face masks do not significantly compromise bacterial filtration efficiency or breathability, supporting the use as a protective measure without substantial hindrance to breathability.
5	Weng et al (2022)	Experiment al study	Healthcare workers	Full-face mask	The use of a full-face mask offers a high level of protection against respiratory infections, suggesting the potential as a reliable preventive measure.
6	J.Liu et al (2022)	Experiment al simulation study	A human body model of 1.7 m tall and 0.6 m wide, with 310 mm2	Cotton face masks, Surgical face masks, N95 face masks	The virus-carrying droplet concentration in a ventilated room decreases significantly with cotton face masks (201 times), surgical face masks

Ν	Article	Research	Sample	Intervention or	Research Results
0	Title	Method		exposure	
			mouth opening, placed in the room is 12 m × 8 m × 3 m.		(43,786 times), and N95 face masks (307,060 times).
7	Han et al (2023)	Experiment al simulation study	Surgical mask with filtration efficiency bench, pressure drop test bench, and schematic of filtration efficiency test bench	Surgical mask	The melt-blown layer is more efficient $(0.1-2.0 \ \mu\text{m})$ particles), but both layers are ineffective (<30%) for particles <0.3 \ \mu\text{m}. Filtration efficiency is determined by layer structure and count.
	Nebulizer d	isinfection, dr	ying, and replace	ement	
8	Towle et al (2013)	In vitro experiment al study	Home nebulizers inoculated with bacterial respiratory pathogens	Baby bottle steam sterilizers	The results support that the use of baby bottle steam sterilizers is effective for nebulizer disinfection.
9	Lopes et al (2015)	Non- Random Experiment al study	Mechanically ventilated tracheostomize d patients	Ozone and ultrasound disinfection	The application of ultrasound reduced contamination levels by 4 log10, while only ozone and two other combined methods and peracetic acid reduced contamination levels by 5 log10.
10	Towle et al (2016)	In vitro experiment al study	Home nebulizers inoculated with non- tuberculous mycobacteria	Baby bottle steam sterilizers	The use of baby bottle steam sterilizers for disinfecting home nebulizers is effective in eliminating bacterial pathogens.
11	da Costa Luciano (2016)	Experiment al study	Traditional biofilm on endoscopy	Different detergents and disinfectants	Detergent and disinfectant combo reduced <i>E. faecalis</i> and <i>P. aeruginosa</i> in biofilm by 3-5 log10 CFU/cm2. Flexible endoscope biofilm is

N	Article Title	Research Method	Sample	Intervention or	Research Results
0		Method		exposure	hard to fully remove with
12	Hohenwart er et al (2016)	In vitro experiment al study	Cystic fibrosis nebulizers	Various steam disinfection protocols	detergents or disinfectants. All bacteria tested were killed efficiently by different steam methods, but the risk of contamination depended on the drying method.
13	Rodney et al (2016)	Experiment al study	Tracheostomy tubes	Reprocessing	Reprocessing PVC Tracheal Tubes, specifically for 20 cycles, unexpectedly increases <i>S. aureus</i> biofilm development, due to surface degradation facilitating bacterial attachment.
14	Manor et al (2017)	Non- Random experiment al study	Airway clearance devices used by CF patients	Cleaning and infection control protocols (Hot clean water and detergent)	Complete eradication of bacteria was achieved in 15 (50%) samples and partial eradication in 9 (30%). Cleaning was completely ineffective in 4 samples.
15	Caskey et al (2018)	In vitro experiment al study	Mycobacteriu m abscessus	Hospital biocides: 1) Acetone, 2) Propan-2-ol, 3) Diethylene glycol, 4) 5-chloro-2-methyl -4-isothiazolin-3- one and 2-methyl-4-isothi azolin-3-one, 5) Chlorine dioxide, 6) 4% chlorhexidine, 7) Alcohol, 8) Disodium carbonate	One of 13 <i>M. abscessus</i> cultures was killed with Chlorine Dioxide [™] and another with Sodium Dichloroisocyanurate. Two isolates were killed by Alcohol. <i>M. abscessus</i> can survive after exposure to several biocides commonly used in hospitals.
16	Towle et al (2018)	In vitro experiment al study	Home nebulizers	Ozone disinfection (SoClean®)	Ozone disinfection (SoClean®) effectively killed >99.99% of bacteria tested including <i>Pseudomonas</i>

Ν	Article	Research	Sample	Intervention or	Research Results
0	Title	Method		exposure	
					aeruginosa and
					Staphylococcus aureus.
					Repeated ozone exposure for
					more than 250 hours did not
					change nebulizer output.
17	Collins et	In vitro	115 de-	Disinfection	Preliminary results showed
	al (2019)	experiment	identified	method: boiling	successful disinfection
		al study	respiratory	H2O for 20 min,	(n=10) across all tested
			Cystic Fibrosis	3.0% hydrogen	isolates using the three
			isolates	peroxide soak for	methods. No discernible
				30 min, or 70%	differences in efficacy
				ethanol soak for 5	between disinfection
				min	methods.
18	J.E Moore	In vitro	Cystic fibrosis	Nebulizer drying	Effective nebulizer drying
	et al	experiment	patients		eliminates detectable P.
	(2020)	al study			aeruginosa. Inadequate
					drying retains significant P.
					aeruginosa quantities.
19	J.Moore &	In vitro	Mycobacteriu	Nebulizer drying	24-hour room temperature
	Millar	experiment	m abscessus		drying does not fully remove
	(2020)	al study	complex		M. abscessus from plastic
					surfaces, even with sputum.
					Drying helps nebulizer
					performance but is not a
					guaranteed NTM eradication
					method.
20	J.E Moore	Experiment	Staphylococcu	Nebulizer drying	MSSA and MRSA were
	& Millar	al study	s aureus		susceptible to drying.
	(2020)		(MSSA and		Implications for cystic
			MRSA)		fibrosis nebulizer hygiene.
21	Hutauruk	Randomize	Tracheostomy	Chlorhexidine	The study showed a
	et al	d controlled	cannulas	decontamination	significant reduction of
	(2021)	trial (RCT)			biofilm colonies in the
					tracheal cannula washing
					group vs. control.
22	J.Moore &	In vitro	Mycobacteriu	Ultraviolet-c	UV-C (254 nm) eradicated
	Millar	experiment	m abscessus	(UVc) light and	all bacteria, including
	(2022)	al study	complex	ozone	challenging M. abscessus
			organisms		complex. O3 treatment

Ν	Article	Research	Sample	Intervention or	Research Results
0	Title	Method		exposure	
					inactivated only 20% of
					isolates.
23	Pineau et	In vitro	Semi-critical	UV disinfection	UV disinfection for 35
	al (2022)	experiment	devices	process, FDA-	seconds has higher sporicidal
		al study		cleared sterilants	efficacy compared with
					chemical sterilization agents.
					UV is much more effective
					than FDA-approved chemical
					HLD products at killing
				-	spores.
24	Ibáñez-	In vitro	ESKAPE	Ozone	Ozone showed bactericidal
	Cervantes	experiment	bacteria	disinfection	effects on biofilms: 12
	et al	al study	biofilms on		min/7.68 ppm for <i>A</i> .
	(2023)		medical		baumannii and C. freundii,
			devices		and 15 min/9.60 ppm for <i>P</i> .
					aeruginosa, K. pneumoniae,
					and S. aureus.
	Additional				
25	Hu et al	In vitro	A lung model	Bacterial filter	The filter effectively
	(2015)	experiment			prevents aerosol
		al study			contamination. However,
					using aerosolized 10%
					acetylcysteine raises bacterial
					filter pressure during
					mechanical ventilation.
					Monitoring is necessary to
• •					address this concern.
26	Phu et al	Experiment	Health care	Portable negative	An analysis using fluorescein
	(2020)	al study	workers	pressure hood	particles on HCWs' personal
				with HEPA	protective equipment showed
				filtration	that negative pressure
					reduced particle deposition
					both inside and outside the
					hood.
27	O'tolle et	Experiment	A critical care	Protective filter	Higher fugitive aerosol
	al (2020)	al study	mechanical	and a pleated	concentrations in the vicinity,
			ventilator of	hydrophobic filter	specifically with larger tidal
			an adult	(PHF), the Pall	volumes (0.077 (0.073,
			patient	Breathing Circuit	0.091) mg m-3 at Vt = 820
				Filter	mL vs. 0.062 (0.056, 0.065)

Ν	Article	Research	Sample	Intervention or	Research Results
0	Title	Method		exposure	
					mg m -3 at Vt = 270 mL)
					when no filter was used.
28	Mac Giolla	Experiment	Aerosol	Bacterial filter	Using a bacterial filter
	Eain et al	al study	therapy		decreased aerosol release by
	(2022)				47.3-83.3% at different
					distances. Filter on the
					mouthpiece significantly
					reduced aerosol levels during
					therapy ($p \le 0.05$).
29	Sugget &	Experiment	Nebulizer	Nebulizer filter	The BAN [™] Nebulizer, with
	Nagel	al study	therapy	kit	a filter kit, eradicated all
	(2022)				losses as per previous reports
					of under 3% environmental
					losses for this device.
					Meanwhile, the other two
					nebulizers still emitted minor
					aerosol amounts despite
					using a filter kit.
	Environme	ntal cleaning			
30	Franke et	Experiment	Surrogates for	Automated room	The ozone-based
	al (2021)	al study	SARS-CoV-2	disinfection	decontamination device
				system using	effectively reduced both
				ozone	surrogate organisms (>4
					log10 reduction) on various
					surfaces and positions,
					demonstrating high efficacy.
31	Trinh et al	Experiment	<i>E. coli</i> and the	Chlorine dioxide	On-site disinfection tests in a
	(2021)	al study	biological	(ClO2) gas	hospital's Mycobacterium
			indicator of	disinfectant	Tuberculosis Laboratory
			spores		effectively eliminated E. coli
			(Geobacillus		and 2 of 5 G.
			stearothermop		
			hilus)		
32	Xia et al	Experiment	Mechanically	Far-ultraviolet	Far-UVC (222 nm)
	(2022)	al study	ventilated	(far-UVC) with	effectively neutralizes
			space	222 nm for	exhaled bioaerosols. Lab
				environmental	trials used E. coli as a
				disinfection	representative, released from
					a manikin in a ventilated
					chamber.

Ν	Article	Research	Sample	Intervention or	Research Results
0	Title	Method		exposure	
33	Nunayon et al (2022)	Experiment al study	Aerosolized Escherichia coli	Rotating upper- room UVC-LED irradiation device	Rotating UVC is 70.5% better than stationary UVC in poor mixing. Rotating irradiation is 84.6% more efficient for long-range disinfection in the same setup. UV dose of 0.59-1.34 J/m2 achieves one-log <i>E. coli</i> inactivation.
34	Lu et al (2023)	Experiment al study	Aerosolized bacteria, bacteriophage	Far-UVC (222- nm) and negative air ions	Far-UVC (222-nm) effectively deactivated bioaerosols, either used alone or in combination. Aerosolized viruses P22 and Phi 6 were more susceptible to 222-nm radiation from KrCl excilamp than negative air ions.
35	Wang et al (2023)	Experiment al study	Airborne microorganism s in a full-scale chamber	222-nm Far-UVC upper-room system	222-nm Far-UVC decay rates and Z-values for bacteria— 0.157, 0.974, 1.18 m2/J. Gram-positive (<i>S.</i> <i>epidermidis</i>) is more resistant than gram-negative (<i>E. coli</i> , <i>S. enterica</i>).
36	Sottani et al (2023)	Experiment al study	The different environments in the hospital	UV-C air treatment and ozone (OZY AIR+LIGHT)	Using UV-C and ozone reduced pathogens by 2- log10, except Clostridioides spp. C. difficile prevention involves a combo of chemical methods and disinfectants.
37	Z. Liu et al (2023)	Experiment al study	Simulated a practical process of an infected person contaminating an isolated room	Single ozone disinfection and the combination of ozone with ultraviolet (UV) lamp disinfection	Ozone <60 ppb had no effect on Serratia marcescens disinfection. Both UVC lamp types are equally effective for <i>S. marcescens</i> and phi- X174, improving air disinfection significantly.