Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment

Submitted: 25 March 2020
Accepted: 6 April 2020
Published: 17 June 2020
Abstract Views: 1006
PDF: 513
HTML: 69
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Elderly people perform more slowly movements of everyday life as rising from a chair, walking, and climbing stairs. This is in the first place due to the loss of muscle contractile force which is even more pronounced than  the loss of muscle mass. In addition, a secondary, but not negligible, component is the rigidity or increased stiffness which requires greater effort to produce the same movement and limits the range of motion of the joints. In this short review, we discuss the possible determinants of the limitations of joint mobility in healthy elderly, starting with the age-dependent alterations of the articular structure and focusing on the increased stiffness of the skeletal muscles. Thereafter, the possible mechanisms of the increased stiffness of the muscle-tendon complex are considered, among them changes in the muscle fibers, alterations of the connective components (extracellular matrix or ECM, aponeurosis, fascia and tendon) and remodeling of the neural pattern of muscle activation with increased of antagonist co-activation.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

James B, Parker AW. Active and passive mobility of lower limb joints in elderly men and women. Am J Phys Med Rehabil 1989;68:162–7. https://doi.org/10.1097/00002060-198908000-00002. DOI: https://doi.org/10.1097/00002060-198908000-00002
Roach KE, Miles TP. Normal hip and knee active range of motion: the relationship to age. Phys Ther 1991;71:656–65. https://doi.org/10.1093/ptj/71.9.656. DOI: https://doi.org/10.1093/ptj/71.9.656
Vandervoort AA, Chesworth BM, Cunningham DA, et al. Age and sex effects on mobility of the human ankle. J Gerontol 1992;47:M17-21. https://doi.org/10.1093/geronj/47.1.m17. DOI: https://doi.org/10.1093/geronj/47.1.M17
Grimston SK, Nigg BM, Hanley DA, et al. Differences in Ankle Joint Complex Range of Motion as a Function of Age. Foot Ankle 1993;14:215–22. https://doi.org/10.1177/107110079301400407. DOI: https://doi.org/10.1177/107110079301400407
Walker JM, Sue D, Miles-Elkousy N, et al. Active mobility of the extremities in older subjects. Phys Ther 1984;64:919–23. https://doi.org/10.1093/ptj/64.6.919. DOI: https://doi.org/10.1093/ptj/64.6.919
Barnes CJ, Van Steyn SJ, Fischer RA. The effects of age, sex, and shoulder dominance on range of motion of the shoulder. J Shoulder Elbow Surg 2001;10:242–6. https://doi.org/10.1067/mse.2001.115270. DOI: https://doi.org/10.1067/mse.2001.115270
Pan F, Arshad R, Zander T, et al. The effect of age and sex on the cervical range of motion - A systematic review and meta-analysis. J Biomech 2018;75:13–27. https://doi.org/10.1016/j.jbiomech.2018.04.047. DOI: https://doi.org/10.1016/j.jbiomech.2018.04.047
Abate M, Carlo LD, Romualdo SD, et al. Postural adjustment in experimental leg length difference evaluated by means of thermal infrared imaging. Physiol Meas 2010;31:35–43. https://doi.org/10.1088/0967-3334/31/1/003. DOI: https://doi.org/10.1088/0967-3334/31/1/003
Wilke J, Macchi V, Caro RD, et al. Fascia thickness, aging and flexibility: is there an association? J Anat 2019;234:43–9. https://doi.org/10.1111/joa.12902. DOI: https://doi.org/10.1111/joa.12902
Reeves ND, Narici MV, Maganaris CN. Myotendinous plasticity to ageing and resistance exercise in humans. Exp Physiol 2006;91:483–98. https://doi.org/10.1113/expphysiol.2005.032896. DOI: https://doi.org/10.1113/expphysiol.2005.032896
Mitchell WK, Williams J, Atherton P, et al. Sarcopenia, Dynapenia, and the Impact of Advancing Age on Human Skeletal Muscle Size and Strength; a Quantitative Review. Front Physiol 2012;3:. https://doi.org/10.3389/fphys.2012.00260. DOI: https://doi.org/10.3389/fphys.2012.00260
Clark DJ, Fielding RA. Neuromuscular contributions to age-related weakness. J Gerontol A Biol Sci Med Sci 2012;67:41–7. https://doi.org/10.1093/gerona/glr041. DOI: https://doi.org/10.1093/gerona/glr041
Ralphs JR, Benjamin M. The joint capsule: structure, composition, ageing and disease. J Anat 1994;184 ( Pt 3):503–9.
Tsujii A, Nakamura N, Horibe S. Age-related changes in the knee meniscus. The Knee 2017;24:1262–70. https://doi.org/10.1016/j.knee.2017.08.001. DOI: https://doi.org/10.1016/j.knee.2017.08.001
Kanazawa K, Hagiwara Y, Sekiguchi T, et al. Correlations Between Range of Motion and Elasticity of the Coracohumeral Ligament Evaluated With Shear-Wave Elastography. J Sport Rehabil 2020:1–7. https://doi.org/10.1123/jsr.2019-0279. DOI: https://doi.org/10.1123/jsr.2019-0279
Yabe Y, Hagiwara Y, Suda H, et al. Joint immobilization induced hypoxic and inflammatory conditions in rat knee joints. Connect Tissue Res 2013;54:210–7. https://doi.org/10.3109/03008207.2013.786056. DOI: https://doi.org/10.3109/03008207.2013.786056
Hagiwara Y, Kanazawa K, Ando A, et al. Blood flow changes of the anterior humeral circumflex artery decrease with the scapula in internal rotation. Knee Surg Sports Traumatol Arthrosc Off J ESSKA 2015;23:1467–72. https://doi.org/10.1007/s00167-013-2823-2. DOI: https://doi.org/10.1007/s00167-013-2823-2
Toh WS, Brittberg M, Farr J, et al. Cellular senescence in aging and osteoarthritis. Acta Orthop 2016;87:6–14. https://doi.org/10.1080/17453674.2016.1235087. DOI: https://doi.org/10.1080/17453674.2016.1235087
Loeser RF. Aging and Osteoarthritis: The Role of Chondrocyte Senescence and Aging Changes in the Cartilage Matrix. Osteoarthr Cartil OARS Osteoarthr Res Soc 2009;17:971–9. https://doi.org/10.1016/j.joca.2009.03.002. DOI: https://doi.org/10.1016/j.joca.2009.03.002
Maganaris CN, Narici MV, Reeves ND. In vivo human tendon mechanical properties: effect of resistance training in old age. J Musculoskelet Neuronal Interact 2004;4:204–8.
Onambele GL, Narici MV, Maganaris CN. Calf muscle-tendon properties and postural balance in old age. J Appl Physiol 2006;100:2048–56. https://doi.org/10.1152/japplphysiol.01442.2005. DOI: https://doi.org/10.1152/japplphysiol.01442.2005
Alnaqeeb MA, Al Zaid NS, Goldspink G. Connective tissue changes and physical properties of developing and ageing skeletal muscle. J Anat 1984;139 ( Pt 4):677–89.
Wood LK, Kayupov E, Gumucio JP, et al. Intrinsic stiffness of extracellular matrix increases with age in skeletal muscles of mice. J Appl Physiol 2014;117:363–9. https://doi.org/10.1152/japplphysiol.00256.2014. DOI: https://doi.org/10.1152/japplphysiol.00256.2014
Gosselin LE, Adams C, Cotter TA, et al. Effect of exercise training on passive stiffness in locomotor skeletal muscle: role of extracellular matrix. J Appl Physiol Bethesda Md 1985 1998;85:1011–6. https://doi.org/10.1152/jappl.1998.85.3.1011. DOI: https://doi.org/10.1152/jappl.1998.85.3.1011
Brown M, Fisher JS, Salsich G. Stiffness and muscle function with age and reduced muscle use. J Orthop Res Off Publ Orthop Res Soc 1999;17:409–14. https://doi.org/10.1002/jor.1100170317. DOI: https://doi.org/10.1002/jor.1100170317
Blanpied P, Smidt GL. The difference in stiffness of the active plantarflexors between young and elderly human females. J Gerontol 1993;48:M58-63. https://doi.org/10.1093/geronj/48.2.m58. DOI: https://doi.org/10.1093/geronj/48.2.M58
Palmer TB, Thompson BJ. Influence of age on passive stiffness and size, quality, and strength characteristics. Muscle Nerve 2017;55:305–15. https://doi.org/10.1002/mus.25231. DOI: https://doi.org/10.1002/mus.25231
Ochala J, Lambertz D, Pousson M, et al. Changes in mechanical properties of human plantar flexor muscles in ageing. Exp Gerontol 2004;39:349–58. https://doi.org/10.1016/j.exger.2003.11.004. DOI: https://doi.org/10.1016/j.exger.2003.11.004
Valour D, Pousson M. Compliance changes of the series elastic component of elbow flexor muscles with age in humans. Pflugers Arch 2003;445:721–7. https://doi.org/10.1007/s00424-002-0871-4. DOI: https://doi.org/10.1007/s00424-002-0871-4
Sobolewski EJ, Ryan ED, Thompson BJ, et al. The influence of age on the viscoelastic stretch response. J Strength Cond Res 2014;28:1106–12. https://doi.org/10.1519/JSC.0000000000000326. DOI: https://doi.org/10.1519/JSC.0000000000000326
Alfuraih AM, Tan AL, O’Connor P, et al. The effect of ageing on shear wave elastography muscle stiffness in adults. Aging Clin Exp Res 2019;31:1755–63. https://doi.org/10.1007/s40520-019-01139-0. DOI: https://doi.org/10.1007/s40520-019-01139-0
Vandervoort AA, Kramer JF, Wharram ER. Eccentric knee strength of elderly females. J Gerontol 1990;45:B125-128. https://doi.org/10.1093/geronj/45.4.b125. DOI: https://doi.org/10.1093/geronj/45.4.B125
Hortobágyi T, Zheng D, Weidner M, et al. The influence of aging on muscle strength and muscle fiber characteristics with special reference to eccentric strength. J Gerontol A Biol Sci Med Sci 1995;50:B399-406. https://doi.org/10.1093/gerona/50a.6.b399. DOI: https://doi.org/10.1093/gerona/50A.6.B399
Roig M, Macintyre DL, Eng JJ, et al. Preservation of eccentric strength in older adults: Evidence, mechanisms and implications for training and rehabilitation. Exp Gerontol 2010;45:400–9. https://doi.org/10.1016/j.exger.2010.03.008. DOI: https://doi.org/10.1016/j.exger.2010.03.008
Macaluso A, Nimmo MA, Foster JE, et al. Contractile muscle volume and agonist-antagonist coactivation account for differences in torque between young and older women. Muscle Nerve 2002;25:858–63. https://doi.org/10.1002/mus.10113. DOI: https://doi.org/10.1002/mus.10113
Hortobágyi T, Devita P. Mechanisms responsible for the age-associated increase in coactivation of antagonist muscles. Exerc Sport Sci Rev 2006;34:29–35. https://doi.org/10.1097/00003677-200601000-00007. DOI: https://doi.org/10.1097/00003677-200601000-00007
Lindstedt SL, LaStayo PC, Reich TE. When active muscles lengthen: properties and consequences of eccentric contractions. News Physiol Sci Int J Physiol Prod Jointly Int Union Physiol Sci Am Physiol Soc 2001;16:256–61. https://doi.org/10.1152/physiologyonline.2001.16.6.256. DOI: https://doi.org/10.1152/physiologyonline.2001.16.6.256
Ochala J, Dorer DJ, Frontera WR, et al. Single skeletal muscle fiber behavior after a quick stretch in young and older men: a possible explanation of the relative preservation of eccentric force in old age. Pflugers Arch 2006;452:464–70. https://doi.org/10.1007/s00424-006-0065-6. DOI: https://doi.org/10.1007/s00424-006-0065-6
Ochala J, Frontera WR, Dorer DJ, et al. Single skeletal muscle fiber elastic and contractile characteristics in young and older men. J Gerontol A Biol Sci Med Sci 2007;62:375–81. https://doi.org/10.1093/gerona/62.4.375. DOI: https://doi.org/10.1093/gerona/62.4.375
LaStayo PC, Woolf JM, Lewek MD, et al. Eccentric muscle contractions: their contribution to injury, prevention, rehabilitation, and sport. J Orthop Sports Phys Ther 2003;33:557–71. https://doi.org/10.2519/jospt.2003.33.10.557. DOI: https://doi.org/10.2519/jospt.2003.33.10.557
Hortobágyi T, DeVita P. Favorable neuromuscular and cardiovascular responses to 7 days of exercise with an eccentric overload in elderly women. J Gerontol A Biol Sci Med Sci 2000;55:B401-410. https://doi.org/10.1093/gerona/55.8.b401. DOI: https://doi.org/10.1093/gerona/55.8.B401
Trappe S, Gallagher P, Harber M, et al. Single Muscle Fibre Contractile Properties in Young and Old Men and Women. J Physiol 2003;552:47–58. https://doi.org/10.1113/jphysiol.2003.044966. DOI: https://doi.org/10.1113/jphysiol.2003.044966
D’Antona G, Pellegrino MA, Adami R, et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol 2003;552:499–511. https://doi.org/10.1113/jphysiol.2003.046276. DOI: https://doi.org/10.1113/jphysiol.2003.046276
Lim JY, Choi SJ, Widrick JJ, et al. Passive force and viscoelastic properties of single fibers in human aging muscles. Eur J Appl Physiol 2019;119:2339–48. https://doi.org/10.1007/s00421-019-04221-7. DOI: https://doi.org/10.1007/s00421-019-04221-7
Fridén J, Lieber RL. Spastic muscle cells are shorter and stiffer than normal cells. Muscle Nerve 2003. https://doi.org/10.1002/mus.10247. DOI: https://doi.org/10.1002/mus.10247
Olsson MC, Krüger M, Meyer L-H, et al. Fibre type-specific increase in passive muscle tension in spinal cord-injured subjects with spasticity. J Physiol 2006;577:339–52. https://doi.org/10.1113/jphysiol.2006.116749. DOI: https://doi.org/10.1113/jphysiol.2006.116749
Prado LG, Makarenko I, Andresen C, et al. Isoform diversity of giant proteins in relation to passive and active contractile properties of rabbit skeletal muscles. J Gen Physiol 2005;126:461–80. https://doi.org/10.1085/jgp.200509364. DOI: https://doi.org/10.1085/jgp.200509364
Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev 2011;91:1447–531. https://doi.org/10.1152/physrev.00031.2010. DOI: https://doi.org/10.1152/physrev.00031.2010
Wang K, McCarter R, Wright J, et al. Regulation of skeletal muscle stiffness and elasticity by titin isoforms: a test of the segmental extension model of resting tension. Proc Natl Acad Sci U S A 1991;88:7101–5. DOI: https://doi.org/10.1073/pnas.88.16.7101
Horowits R. Passive force generation and titin isoforms in mammalian skeletal muscle. Biophys J 1992;61:392–8. DOI: https://doi.org/10.1016/S0006-3495(92)81845-3
Mutungi G, Trinick J, Ranatunga KW. Resting tension characteristics in differentiating intact rat fast- and slow-twitch muscle fibers. J Appl Physiol Bethesda Md 1985 2003;95:2241–7. https://doi.org/10.1152/japplphysiol.00990.2002. DOI: https://doi.org/10.1152/japplphysiol.00990.2002
Freundt JK, Linke WA. Titin as a force-generating muscle protein under regulatory control. J Appl Physiol Bethesda Md 1985 2019;126:1474–82. https://doi.org/10.1152/japplphysiol.00865.2018. DOI: https://doi.org/10.1152/japplphysiol.00865.2018
Labeit D, Watanabe K, Witt C, et al. Calcium-dependent molecular spring elements in the giant protein titin. Proc Natl Acad Sci U S A 2003;100:13716–21. https://doi.org/10.1073/pnas.2235652100. DOI: https://doi.org/10.1073/pnas.2235652100
Kjaer M. Role of extracellular matrix in adaptation of tendon and skeletal muscle to mechanical loading. Physiol Rev 2004;84:649–98. https://doi.org/10.1152/physrev.00031.2003. DOI: https://doi.org/10.1152/physrev.00031.2003
Borg TK, Caulfield JB. Morphology of connective tissue in skeletal muscle. Tissue Cell 1980;12:197–207. https://doi.org/10.1016/0040-8166(80)90061-0. DOI: https://doi.org/10.1016/0040-8166(80)90061-0
Street SF. Lateral transmission of tension in frog myofibers: a myofibrillar network and transverse cytoskeletal connections are possible transmitters. J Cell Physiol 1983;114:346–64. https://doi.org/10.1002/jcp.1041140314. DOI: https://doi.org/10.1002/jcp.1041140314
Huijing PA, Baan GC, Rebel GT. Non-myotendinous force transmission in rat extensor digitorum longus muscle. J Exp Biol 1998;201:683–91.
Meyer GA, Lieber RL. Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles. J Biomech 2011;44:771–3. https://doi.org/10.1016/j.jbiomech.2010.10.044. DOI: https://doi.org/10.1016/j.jbiomech.2010.10.044
Meyer G, Lieber RL. Muscle fibers bear a larger fraction of passive muscle tension in frogs compared with mice. J Exp Biol 2018;221:jeb182089. https://doi.org/10.1242/jeb.182089. DOI: https://doi.org/10.1242/jeb.182089
Marcucci L, Bondì M, Randazzo G, et al. Fibre and extracellular matrix contributions to passive forces in human skeletal muscles: An experimental based constitutive law for numerical modelling of the passive element in the classical Hill-type three element model. PLOS ONE 2019;14:e0224232. https://doi.org/10.1371/journal.pone.0224232. DOI: https://doi.org/10.1371/journal.pone.0224232
Kragstrup TW, Kjaer M, Mackey AL. Structural, biochemical, cellular, and functional changes in skeletal muscle extracellular matrix with aging. Scand J Med Sci Sports 2011;21:749–57. https://doi.org/10.1111/j.1600-0838.2011.01377.x. DOI: https://doi.org/10.1111/j.1600-0838.2011.01377.x
Gao Y, Kostrominova TY, Faulkner JA, et al. Age-related changes in the mechanical properties of the epimysium in skeletal muscles of rats. J Biomech 2008;41:465–9. https://doi.org/10.1016/j.jbiomech.2007.09.021. DOI: https://doi.org/10.1016/j.jbiomech.2007.09.021
Delabastita T, Bogaerts S, Vanwanseele B. Age-Related Changes in Achilles Tendon Stiffness and Impact on Functional Activities: A Systematic Review and Meta-Analysis. J Aging Phys Act 2018:1–12. https://doi.org/10.1123/japa.2017-0359. DOI: https://doi.org/10.1123/japa.2017-0359
Eriksen CS, Henkel C, Svensson RB, et al. Lower tendon stiffness in very old compared with old individuals is unaffected by short-term resistance training of skeletal muscle. J Appl Physiol Bethesda Md 1985 2018;125:205–14. https://doi.org/10.1152/japplphysiol.00028.2018. DOI: https://doi.org/10.1152/japplphysiol.00028.2018
Hsiao M-Y, Chen Y-C, Lin C-Y, et al. Reduced Patellar Tendon Elasticity with Aging: In Vivo Assessment by Shear Wave Elastography. Ultrasound Med Biol 2015;41:2899–905. https://doi.org/10.1016/j.ultrasmedbio.2015.07.008. DOI: https://doi.org/10.1016/j.ultrasmedbio.2015.07.008
Riley GP, Harrall RL, Constant CR, et al. Glycosaminoglycans of human rotator cuff tendons: changes with age and in chronic rotator cuff tendinitis. Ann Rheum Dis 1994;53:367–76. https://doi.org/10.1136/ard.53.6.367. DOI: https://doi.org/10.1136/ard.53.6.367
Vogel HG. Age dependence of mechanical properties of rat tail tendons (hysteresis experiments). Aktuelle Gerontol 1983;13:22–7.
Nakagawa Y, Hayashi K, Yamamoto N, et al. Age-related changes in biomechanical properties of the Achilles tendon in rabbits. Eur J Appl Physiol 1996;73:7–10. https://doi.org/10.1007/bf00262803. DOI: https://doi.org/10.1007/BF00262803
Dressler MR, Butler DL, Wenstrup R, et al. A potential mechanism for age-related declines in patellar tendon biomechanics. J Orthop Res Off Publ Orthop Res Soc 2002;20:1315–22. https://doi.org/10.1016/S0736-0266(02)00052-9. DOI: https://doi.org/10.1016/S0736-0266(02)00052-9
Slane LC, Martin J, DeWall R, et al. Quantitative ultrasound mapping of regional variations in shear wave speeds of the aging Achilles tendon. Eur Radiol 2017;27:474–82. https://doi.org/10.1007/s00330-016-4409-0. DOI: https://doi.org/10.1007/s00330-016-4409-0
Svensson RB, Heinemeier KM, Couppé C, et al. Effect of aging and exercise on the tendon. J Appl Physiol Bethesda Md 1985 2016;121:1237–46. https://doi.org/10.1152/japplphysiol.00328.2016. DOI: https://doi.org/10.1152/japplphysiol.00328.2016
Stecco C. Functional Atlas of the Human Fascial System E-Book. Elsevier Health Sciences; 2014.
Stecco C, Tiengo C, Stecco A, et al. Fascia redefined: anatomical features and technical relevance in fascial flap surgery. Surg Radiol Anat SRA 2013;35:369–76. https://doi.org/10.1007/s00276-012-1058-0. DOI: https://doi.org/10.1007/s00276-012-1058-0
Trindade VLA, Martins P a. LS, Santos S, et al. Experimental study of the influence of senescence in the biomechanical properties of the temporal tendon and deep temporal fascia based on uniaxial tension tests. J Biomech 2012;45:199–201. https://doi.org/10.1016/j.jbiomech.2011.09.018. DOI: https://doi.org/10.1016/j.jbiomech.2011.09.018
Kojic M, Mijailovic S, Zdravkovic N. Modelling of muscle behaviour by the finite element method using Hill’s three-element model. Int J Numer Methods Eng 1998;43:941–53. https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3. DOI: https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3
Huxley AF. Muscle Structure and Theories of Contraction. Prog Biophys Biophys Chem 1957;7:255–318. DOI: https://doi.org/10.1016/S0096-4174(18)30128-8
Marcucci L, Reggiani C. Mechanosensing in Myosin Filament Solves a 60 Years Old Conflict in Skeletal Muscle Modeling between High Power Output and Slow Rise in Tension. Front Physiol 2016;7:427. https://doi.org/10.3389/fphys.2016.00427. DOI: https://doi.org/10.3389/fphys.2016.00427
Marcucci L, Washio T, Yanagida T. Titin-mediated thick filament activation, through a mechanosensing mechanism, introduces sarcomere-length dependencies in mathematical models of rat trabecula and whole ventricle. Sci Rep 2017;7:5546. https://doi.org/10.1038/s41598-017-05999-2. DOI: https://doi.org/10.1038/s41598-017-05999-2
Marcucci L, Washio T, Yanagida T. Proposed mechanism for the length dependence of the force developed in maximally activated muscles. Sci Rep 2019;9:1317. https://doi.org/10.1038/s41598-018-36706-4. DOI: https://doi.org/10.1038/s41598-018-36706-4
Epstein M (Marcelo). Theoretical models of skeletal muscle: biological and mathematical considerations. Chichester New York: Wiley; 1998.
Huijing PA. Muscle as a collagen fiber reinforced composite: a review of force transmission in muscle and whole limb. J Biomech 1999;32:329–45. https://doi.org/10.1016/s0021-9290(98)00186-9. DOI: https://doi.org/10.1016/S0021-9290(98)00186-9
Pato MPM, Santos NJG, Areias P, et al. Finite element studies of the mechanical behaviour of the diaphragm in normal and pathological cases. Comput Methods Biomech Biomed Engin 2011;14:505–13. https://doi.org/10.1080/10255842.2010.483683. DOI: https://doi.org/10.1080/10255842.2010.483683
Zhang G, Chen X, Ohgi J, et al. Biomechanical simulation of thorax deformation using finite element approach. Biomed Eng OnLine 2016;15:1–18. https://doi.org/10.1186/s12938-016-0132-y. DOI: https://doi.org/10.1186/s12938-016-0132-y
Johansson T, Meier P, Blickhan R. A Finite-Element Model for the Mechanical Analysis of Skeletal Muscles. J Theor Biol 2000;206:131–49. https://doi.org/10.1006/jtbi.2000.2109. DOI: https://doi.org/10.1006/jtbi.2000.2109
Martins JAC, Pires EB, Salvado R, et al. A numerical model of passive and active behavior of skeletal muscles. Comput Methods Appl Mech Eng 1998;151:419–33. https://doi.org/10.1016/S0045-7825(97)00162-X. DOI: https://doi.org/10.1016/S0045-7825(97)00162-X
Oomens CWJ, Maenhout M, van Oijen CH, et al. Finite element modelling of contracting skeletal muscle. Philos Trans R Soc Lond B Biol Sci 2003;358:1453–60. https://doi.org/10.1098/rstb.2003.1345. DOI: https://doi.org/10.1098/rstb.2003.1345
Blemker SS, Pinsky PM, Delp SL. A 3D model of muscle reveals the causes of nonuniform strains in the biceps brachii. J Biomech 2005;38:657–65. https://doi.org/10.1016/j.jbiomech.2004.04.009. DOI: https://doi.org/10.1016/j.jbiomech.2004.04.009
Marcucci L, Reggiani C, Natali AN, et al. From single muscle fiber to whole muscle mechanics: a finite element model of a muscle bundle with fast and slow fibers. Biomech Model Mechanobiol 2017;16:1833–43. https://doi.org/10.1007/s10237-017-0922-6. DOI: https://doi.org/10.1007/s10237-017-0922-6
Zhang C, Gao Y. Finite element analysis of mechanics of lateral transmission of force in single muscle fiber. J Biomech 2012;45:2001–6. https://doi.org/10.1016/j.jbiomech.2012.04.026. DOI: https://doi.org/10.1016/j.jbiomech.2012.04.026
Bleiler C, Ponte Castañeda P, Röhrle O. A microstructurally-based, multi-scale, continuum-mechanical model for the passive behaviour of skeletal muscle tissue. J Mech Behav Biomed Mater 2019;97:171–86. https://doi.org/10.1016/j.jmbbm.2019.05.012. DOI: https://doi.org/10.1016/j.jmbbm.2019.05.012
Teklemariam A, Hodson-Tole E, Reeves ND, et al. A micromechanical muscle model for determining the impact of motor unit fiber clustering on force transmission in aging skeletal muscle. Biomech Model Mechanobiol 2019;18:1401–13. https://doi.org/10.1007/s10237-019-01152-2. DOI: https://doi.org/10.1007/s10237-019-01152-2
Sharafi B, Blemker SS. A mathematical model of force transmission from intrafascicularly terminating muscle fibers. J Biomech 2011;44:2031–9. https://doi.org/10.1016/j.jbiomech.2011.04.038. DOI: https://doi.org/10.1016/j.jbiomech.2011.04.038
Zhang Y, Chen J-S, He Q, et al. Microstructural analysis of skeletal muscle force generation during aging. Int J Numer Methods Biomed Eng 2020;36:e3295. https://doi.org/10.1002/cnm.3295. DOI: https://doi.org/10.1002/cnm.3295
Gao Y, Wineman AS, Waas AM. Mechanics of muscle injury induced by lengthening contraction. Ann Biomed Eng 2008;36:1615–23. https://doi.org/10.1007/s10439-008-9547-3. DOI: https://doi.org/10.1007/s10439-008-9547-3
Blazevich AJ. Adaptations in the passive mechanical properties of skeletal muscle to altered patterns of use. J Appl Physiol Bethesda Md 1985 2019;126:1483–91. https://doi.org/10.1152/japplphysiol.00700.2018. DOI: https://doi.org/10.1152/japplphysiol.00700.2018

How to Cite

Marcucci, L., & Reggiani, C. (2020). Increase of resting muscle stiffness, a less considered component of age-related skeletal muscle impairment. European Journal of Translational Myology, 30(2), 223–233. https://doi.org/10.4081/ejtm.2020.8982