0
0
0
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

The Microbiota-Gut-Brain Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Narrative Review of an Emerging Field

Authors

The intricate relationship between gut microbiota and the brain has emerged as a pivotal area of research, particularly in understanding myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). This complex condition is characterized by debilitating fatigue, cognitive dysfunction, and a wide array of systemic manifestations, posing significant challenges for diagnosis and treatment. Recent studies highlight the microbiota-gut-brain axis as a crucial pathway in ME/CFS pathophysiology, suggesting that alterations in gut microbial composition may impact immune responses, neurochemical signaling, and neuronal health. This narrative review systematically explores English-language scholarly articles from January 1995 to January 2025, utilizing databases such as PubMed, Scopus, and Web of Science. The findings underscore the potential for targeted therapeutic interventions aimed at correcting gut dysbiosis. As research progresses, a deeper understanding of the microbiota-gut-brain connection could lead to innovative approaches for managing ME/CFS, ultimately enhancing the quality of life for affected individuals.

König RS, Albrich WC, Kahlert CR, et al. The gut microbiome in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Front Immunol 2022:12:628741. DOI: https://doi.org/10.3389/fimmu.2021.628741
Deumer US, Varesi A, Floris V, et al. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): an overview. J Clin Med 2021;10:4786. DOI: https://doi.org/10.3390/jcm10204786
Varesi A, Deumer US, Ananth S, et al. The emerging role of gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): current evidence and potential therapeutic applications. J Clin Med 2021;10:5077. DOI: https://doi.org/10.3390/jcm10215077
Jurek JM, Castro-Marrero J. A Narrative review on gut microbiome disturbances and microbial preparations in myalgic encephalomyelitis/chronic fatigue syndrome: implications for long COVID. Nutrients 2024;16:1545. DOI: https://doi.org/10.3390/nu16111545
Stallmach A, Quickert S, Puta C, et al. The gastrointestinal microbiota in the development of ME/CFS: a critical view and potential perspectives. Front Immunol 2024:15:1352744. DOI: https://doi.org/10.3389/fimmu.2024.1352744
Du Preez S, Corbitt M, Cabanas H, et al. A systematic review of enteric dysbiosis in chronic fatigue syndrome/myalgic encephalomyelitis. Syst Rev 2018;7:241. DOI: https://doi.org/10.1186/s13643-018-0909-0
Wang JH, Choi Y, Lee JS, et al. Clinical evidence of the link between gut microbiome and myalgic encephalomyelitis/chronic fatigue syndrome: a retrospective review. Eur J Med Res 2024;29:148. DOI: https://doi.org/10.1186/s40001-024-01747-1
Lupo GF, Rocchetti G, Lucini L, et al. Potential role of microbiome in chronic fatigue syndrome/myalgic encephalomyelits (CFS/ME). Sci Rep 2021;11:7043. DOI: https://doi.org/10.1038/s41598-021-86425-6
Bested AC, Marshall LM. Review of myalgic encephalomyelitis/chronic fatigue syndrome: an evidence-based approach to diagnosis and management by clinicians. Rev Environ Health 2015;30:223-49. DOI: https://doi.org/10.1515/reveh-2015-0026
Giloteaux L, Goodrich JK, Walters WA, et al. Reduced diversity and altered composition of the gut microbiome in individuals with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome 2016;4:30. DOI: https://doi.org/10.1186/s40168-016-0171-4
Chu L, Valencia IJ, Garvert DW, et al. Onset patterns and course of myalgic encephalomyelitis/chronic fatigue syndrome. Front Pediatr 2019:7:12. DOI: https://doi.org/10.3389/fped.2019.00012
Pendergrast T, Brown A, Sunnquist M, et al. Housebound versus nonhousebound patients with myalgic encephalomyelitis and chronic fatigue syndrome. Chronic Illn 2016;12:292-307. DOI: https://doi.org/10.1177/1742395316644770
Pheby DF, Araja D, Berkis U, et al. The development of a consistent Europe-wide approach to investigating the economic impact of myalgic encephalomyelitis (ME/CFS): A report from the European Network on ME/CFS (EUROMENE). Healthcare 2020;8:88. DOI: https://doi.org/10.3390/healthcare8020088
Twisk F. Myalgic encephalomyelitis or what? The International Consensus Criteria. Diagnostics 2018;9:1. DOI: https://doi.org/10.3390/diagnostics9010001
Lim EJ, Ahn YC, Jang ES, et al. Systematic review and meta-analysis of the prevalence of chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). J Transl Med 2020;18:100. DOI: https://doi.org/10.1186/s12967-020-02269-0
Fennell PA, Dorr N, George SS. Elements of suffering in myalgic encephalomyelitis/chronic fatigue syndrome: the experience of loss, grief, stigma, and trauma in the severely and very severely affected. Healthcare 2021;9:553. DOI: https://doi.org/10.3390/healthcare9050553
Esfandyarpour R, Kashi A, Nemat-Gorgani M, Wilhelmy et al. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc Natl Acad Sci 2019;116:10250-7. DOI: https://doi.org/10.1073/pnas.1901274116
Brenu EW, Broadley S, Nguyen T, et al. A preliminary comparative assessment of the role of CD8+ T cells in chronic fatigue syndrome/Myalgic encephalomyelitis and multiple sclerosis. J Immunol Res 2016:2016:9064529. DOI: https://doi.org/10.1155/2016/9064529
Nagy-Szakal D, Williams BL, Mishra N, et al. Fecal metagenomic profiles in subgroups of patients with myalgic encephalomyelitis/chronic fatigue syndrome. Microbiome 2017;5:44. DOI: https://doi.org/10.1186/s40168-017-0261-y
Naviaux RK, Naviaux JC, Li K, et al. Metabolic features of chronic fatigue syndrome. Proc Natl Acad Sci 2016;113:E5472-80. DOI: https://doi.org/10.1073/pnas.1607571113
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012;13:701-12. DOI: https://doi.org/10.1038/nrn3346
Sudo N, Chida Y, Aiba Y, et al. Postnatal microbial colonization programs the hypothalamic–pituitary–adrenal system for stress response in mice. J Physiol 2004;558:263-75. DOI: https://doi.org/10.1113/jphysiol.2004.063388
Bercik P, Denou E, Collins J, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterology 2011;141:599-609. DOI: https://doi.org/10.1053/j.gastro.2011.04.052
Jackson ML, Butt H, Ball M, et al. Sleep quality and the treatment of intestinal microbiota imbalance in chronic fatigue syndrome: a pilot study. Sleep Sci 2015;8:124-33.
Wallis A, Ball M, Butt H, et al. Open-label pilot for treatment targeting gut dysbiosis in myalgic encephalomyelitis/chronic fatigue syndrome: neuropsychological symptoms and sex comparisons. J Transl Med 2018;16:24. DOI: https://doi.org/10.1186/s12967-018-1392-z
Sullivan Å, Nord CE, Evengård B. Effect of supplement with lactic-acid producing bacteria on fatigue and physical activity in patients with chronic fatigue syndrome. Nutr J 2009:8:4. DOI: https://doi.org/10.1186/1475-2891-8-4
Rao AV, Bested AC, Beaulne TM, et al. A randomized, double-blind, placebo-controlled pilot study of a probiotic in emotional symptoms of chronic fatigue syndrome. Gut Pathog 2009;1:6. DOI: https://doi.org/10.1186/1757-4749-1-6
Rivas JL, Palencia T, Fernández G, et al. Association of T and NK cell phenotype with the diagnosis of myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Front Immunol 2018:9:1028. DOI: https://doi.org/10.3389/fimmu.2018.01028
Fletcher MA, Zeng XR, Maher K, et al. Biomarkers in chronic fatigue syndrome: evaluation of natural killer cell function and dipeptidyl peptidase IV/CD26. PLoS One 2010;5:e10817. DOI: https://doi.org/10.1371/journal.pone.0010817
Ginzburg E, Klimas N, Parvus C, et al. Long-term safety of testosterone and growth hormone supplementation: a retrospective study of metabolic, cardiovascular, and oncologic outcomes. J Transl Med 2011:9:81. DOI: https://doi.org/10.4021/jocmr428w
Montoya JG, Holmes TH, Anderson JN, et al. Cytokine signature associated with disease severity in chronic fatigue syndrome patients. Proc Natl Acad Sci 2017;114:E7150-E7158. DOI: https://doi.org/10.1073/pnas.1710519114
Mohammed RN, Khosravi M, Rahman HS, et al. Anastasis: cell recovery mechanisms and potential role in cancer. Cell Commun Signal 2022;20:81. DOI: https://doi.org/10.1186/s12964-022-00880-w
Maes M, Mihaylova I, Leunis JC. Increased serum IgA and IgM against LPS of enterobacteria in chronic fatigue syndrome (CFS): indication for the involvement of gram-negative enterobacteria in the etiology of CFS and for the presence of an increased gut–intestinal permeability. J Affect Disord 2007;99:237-40. DOI: https://doi.org/10.1016/j.jad.2006.08.021
VanElzakker MB, Brumfield SA, Lara Mejia PS. Neuroinflammation and cytokines in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): a critical review of research methods. Front Neurol 2019:9:1033. DOI: https://doi.org/10.3389/fneur.2018.01033
Simonato M, Dall’Acqua S, Zilli C, et al. Tryptophan metabolites, cytokines, and fatty acid binding protein 2 in myalgic encephalomyelitis/chronic fatigue syndrome. Biomedicines 2021;9:1724. DOI: https://doi.org/10.3390/biomedicines9111724
Han Y, Wang B, Gao H, et al. Vagus nerve and underlying impact on the gut microbiota-brain axis in behavior and neurodegenerative diseases. J Inflamm Res 2022:15:6213-30. DOI: https://doi.org/10.2147/JIR.S384949
Borody TJ, Nowak A, Finlayson S. The GI microbiome and its role in chronic fatigue syndrome: a summary of bacteriotherapy. J Australas Coll Nutr Environ Med 2012;31:3-8.
Salonen T, Jokinen E, Satokari R, et al. Randomized, double-blinded, placebo-controlled pilot study: efficacy of faecal microbiota transplantation on chronic fatigue syndrome. J Transl Med 2023;21:513. DOI: https://doi.org/10.1186/s12967-023-04227-y
Reuken PA, Besteher B, Finke K, et al. Longterm course of neuropsychological symptoms and ME/CFS after SARS-CoV-2-infection: a prospective registry study. Eur Arch Psychiatry Clin Neurosci 2024;274:1903-10. DOI: https://doi.org/10.1007/s00406-023-01661-3
Briese T, Tokarz R, Bateman L, et al. A multicenter virome analysis of blood, feces, and saliva in myalgic encephalomyelitis/chronic fatigue syndrome. J Med Virol 2023;95:e28993. DOI: https://doi.org/10.1002/jmv.28993
Frémont M, Coomans D, Massart S, et al. High-throughput 16S rRNA gene sequencing reveals alterations of intestinal microbiota in myalgic encephalomyelitis/chronic fatigue syndrome patients. Anaerobe 2013:22:50-6. DOI: https://doi.org/10.1016/j.anaerobe.2013.06.002
Armstrong CW, McGregor NR, Lewis DP, et al. The association of fecal microbiota and fecal, blood serum and urine metabolites in myalgic encephalomyelitis/chronic fatigue syndrome. Metabolomics 2017;13:8. DOI: https://doi.org/10.1007/s11306-016-1145-z
Sheedy JR, Wettenhall RE, Scanlon D, et al. Increased d-lactic acid intestinal bacteria in patients with chronic fatigue syndrome. In Vivo 2009;23:621-8.
Navaneetharaja N, Griffiths V, Wileman T, et al. A role for the intestinal microbiota and virome in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)? J Clin Med 2016;5:55. DOI: https://doi.org/10.3390/jcm5060055
Newberry F, Hsieh SY, Wileman T, et al. Does the microbiome and virome contribute to myalgic encephalomyelitis/chronic fatigue syndrome? Clin Sci 2018;132(5):523-42. DOI: https://doi.org/10.1042/CS20171330
Estaki M, Pither J, Baumeister P, et al. Cardiorespiratory fitness as a predictor of intestinal microbial diversity and distinct metagenomic functions. Microbiome 2016;4:42. DOI: https://doi.org/10.1186/s40168-016-0189-7
Franklin JD, Atkinson G, Atkinson JM, et al. Peak oxygen uptake in chronic fatigue syndrome/myalgic encephalomyelitis: A meta-analysis. Int J Sports Med 2019;40:77-87. DOI: https://doi.org/10.1055/a-0802-9175
Logan AC, Rao AV, Irani D. Chronic fatigue syndrome: lactic acid bacteria may be of therapeutic value. Med Hypotheses 2003;60:915-23. DOI: https://doi.org/10.1016/S0306-9877(03)00096-3
Giloteaux L, Hanson MR, Keller BA. A pair of identical twins discordant for myalgic encephalomyelitis/chronic fatigue syndrome differ in physiological parameters and gut microbiome composition. Am J Case Rep 2016:17:720-9. DOI: https://doi.org/10.12659/AJCR.900314
Borren NZ, Plichta D, Joshi AD, et al. Alterations in fecal microbiomes and serum metabolomes of fatigued patients with quiescent inflammatory bowel diseases. Clin Gastroenterol Hepatol 2021;19:519-27. DOI: https://doi.org/10.1016/j.cgh.2020.03.013
Xiao C, Fedirko V, Beitler J, et al. The role of the gut microbiome in cancer-related fatigue: pilot study on epigenetic mechanisms. Support Care Cancer 2021;29:3173-82. DOI: https://doi.org/10.1007/s00520-020-05820-3
Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One 2015;10:e0137429. DOI: https://doi.org/10.1371/journal.pone.0137429
Leiva-Gea I, Sánchez-Alcoholado L, Martín-Tejedor B, et al. Gut microbiota differs in composition and functionality between children with type 1 diabetes and MODY2 and healthy control subjects: a case-control study. Diabetes Care 2018;41:2385-95. DOI: https://doi.org/10.2337/dc18-0253
Kitami T, Fukuda S, Kato T, et al. Deep phenotyping of myalgic encephalomyelitis/chronic fatigue syndrome in Japanese population. Sci Rep 2020;10:19933. DOI: https://doi.org/10.1038/s41598-020-77105-y
Raijmakers RP, Roerink ME, Jansen AF, et al. Multi-omics examination of Q fever fatigue syndrome identifies similarities with chronic fatigue syndrome. J Transl Med 2020;18:448. DOI: https://doi.org/10.1186/s12967-020-02585-5
Corbitt M, Campagnolo N, Staines D, et al. A systematic review of probiotic interventions for gastrointestinal symptoms and irritable bowel syndrome in chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME). Probiotics Antimicrob Proteins 2018;10:466-77. DOI: https://doi.org/10.1007/s12602-018-9397-8
Maier L, Pruteanu M, Kuhn M, et al. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature 2018;555:623-8. DOI: https://doi.org/10.1038/nature25979
Vich Vila A, Collij V, Sanna S, et al. Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat Commun 2020;11:362. DOI: https://doi.org/10.1038/s41467-019-14177-z
Falony G, Joossens M, Vieira-Silva S, et al. Population-level analysis of gut microbiome variation. Science 2016;352:560-4. DOI: https://doi.org/10.1126/science.aad3503
David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-63. DOI: https://doi.org/10.1038/nature12820
Wu GD, Chen J, Hoffmann C, Bittinger K, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science 2011;334:105-8. DOI: https://doi.org/10.1126/science.1208344
Mandarano AH, Giloteaux L, Keller BA, et al. Eukaryotes in the gut microbiota in myalgic encephalomyelitis/chronic fatigue syndrome. PeerJ 2018:6:e4282. DOI: https://doi.org/10.7717/peerj.4282
Cani PD. Human gut microbiome: hopes, threats and promises. Gut 2018;67:1716-25. DOI: https://doi.org/10.1136/gutjnl-2018-316723
Hanson MR, Giloteaux L. The gut microbiome in myalgic encephalomyelitis. The Biochemist 2017;39:10-3. DOI: https://doi.org/10.1042/BIO03902010
Tsai SY, Chen HJ, Chen C, et al. Increased risk of chronic fatigue syndrome following psoriasis: a nationwide population-based cohort study. J Transl Med 2019;17:55. DOI: https://doi.org/10.1186/s12967-019-1888-1
Shukla SK, Cook D, Meyer J, et al. Changes in gut and plasma microbiome following exercise challenge in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). PLoS One 2015;10:e0145453. DOI: https://doi.org/10.1371/journal.pone.0145453
Maes M, Twisk FN, Kubera M, et al. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J Affect Disord 2012;136:909-17. DOI: https://doi.org/10.1016/j.jad.2011.09.010
Nagy-Szakal D, Barupal DK, Lee B, et al. Insights into myalgic encephalomyelitis/chronic fatigue syndrome phenotypes through comprehensive metabolomics. Sci Rep 2018;8:10056. DOI: https://doi.org/10.1038/s41598-018-28477-9
Khosravi M, De Berardis D, Mazloom S, et al. Oropharyngeal microbiome composition as a possible diagnostic marker for true psychosis in a forensic psychiatric setting: A narrative literature review and an opinion. Electron J Gen Med 2023;20:em486. DOI: https://doi.org/10.29333/ejgm/13092
Khosravi M. Ursodeoxycholic acid in patients with treatment-resistant schizophrenia suffering from coronavirus disease 2019: A hypothesis letter. Front Psychiatry 2021:12:657316. DOI: https://doi.org/10.3389/fpsyt.2021.657316
Silva YP, Bernardi A, Frozza RL. The role of short-chain fatty acids from gut microbiota in gut-brain communication. Front Endocrinol 2020:11:25. DOI: https://doi.org/10.3389/fendo.2020.00025
Galland L. The gut microbiome and the brain. J Med Food 2014;17:1261-72. DOI: https://doi.org/10.1089/jmf.2014.7000
Den Besten G, Van Eunen K, Groen AK, et al. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 2013;54:2325-40. DOI: https://doi.org/10.1194/jlr.R036012
Khosravi M. Stress reduction model of COVID-19 pandemic. Iran J Psychiatry Behav Sci 2020;14:e103865. DOI: https://doi.org/10.5812/ijpbs.103865
Carruthers BM, van de Sande MI, De Meirleir KL, et al. Myalgic encephalomyelitis: international consensus criteria. J Intern Med 2011;270:327-38. DOI: https://doi.org/10.1111/j.1365-2796.2011.02428.x
Mathew SJ, Mao X, Keegan KA, et al. Ventricular cerebrospinal fluid lactate is increased in chronic fatigue syndrome compared with generalized anxiety disorder: an in vivo 3.0 T 1H MRS imaging study. NMR Biomed 2009;22:251-8. DOI: https://doi.org/10.1002/nbm.1315
Russell A, Hepgul N, Nikkheslat N, et al. Persistent fatigue induced by interferon-alpha: a novel, inflammation-based, proxy model of chronic fatigue syndrome. Psychoneuroendocrinology 2019:100:276-85. DOI: https://doi.org/10.1016/j.psyneuen.2018.11.032
Kashi AA, Davis RW, Phair RD. The IDO metabolic trap hypothesis for the etiology of ME/CFS. Diagnostics 2019;9:82. DOI: https://doi.org/10.3390/diagnostics9030082
Khosravi M. Child maltreatment-related dissociation and its core mediation schemas in patients with borderline personality disorder. BMC Psychiatry 2020;20:405. DOI: https://doi.org/10.1186/s12888-020-02797-5
Blankfield A. A brief historic overview of clinical disorders associated with tryptophan: the relevance to chronic fatigue syndrome (CFS) and fibromyalgia (FM). Int J Tryptophan Res 2012:5:27-32. DOI: https://doi.org/10.4137/IJTR.S10085
Zhang A, Rijal K, Ng SK, et al. A mass spectrometric method for quantification of tryptophan-derived uremic solutes in human serum. J Biol Methods 2017;4:e75. DOI: https://doi.org/10.14440/jbm.2017.182
The GK, Verkes RJ, Fekkes D, et al. Tryptophan depletion in chronic fatigue syndrome, a pilot cross-over study. BMC Res Notes 2014:7:650. DOI: https://doi.org/10.1186/1756-0500-7-650
Khosravi M. Biopsychosocial factors associated with disordered eating behaviors in schizophrenia. Ann Gen Psychiatry 2020;19:67. DOI: https://doi.org/10.1186/s12991-020-00314-2
Ruddick JP, Evans AK, Nutt DJ, et al. Tryptophan metabolism in the central nervous system: medical implications. Expert Rev Mol Med 2006;8:1-27. DOI: https://doi.org/10.1017/S1462399406000068
Eleftheriadis T, Pissas G, Sounidaki M, et al. Indoleamine 2, 3-dioxygenase, by degrading L-tryptophan, enhances carnitine palmitoyltransferase I activity and fatty acid oxidation, and exerts fatty acid-dependent effects in human alloreactive CD4+ T-cells. Int J Mol Med 2016;38:1605-13. DOI: https://doi.org/10.3892/ijmm.2016.2750
Schmidt SV, Schultze JL. New insights into IDO biology in bacterial and viral infections. Front Immunol 2014:5:384. DOI: https://doi.org/10.3389/fimmu.2014.00384
Khosravi M. COVID-19 pandemic: what are the risks and challenges for schizophrenia. Clin Schizophr Relat Psychoses 2020;14:58-9.
Chen M, Liu Y, Xiong S, et al. Dietary l-tryptophan alleviated LPS-induced intestinal barrier injury by regulating tight junctions in a Caco-2 cell monolayer model. Food Funct 2019;10:2390-8. DOI: https://doi.org/10.1039/C9FO00123A
Jenkins TA, Nguyen JC, Polglaze KE et al. Influence of tryptophan and serotonin on mood and cognition with a possible role of the gut-brain axis. Nutrients 2016;8:56. DOI: https://doi.org/10.3390/nu8010056
Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol 2018:8:13. DOI: https://doi.org/10.3389/fcimb.2018.00013
Laurans L, Venteclef N, Haddad Y, et al. Genetic deficiency of indoleamine 2, 3-dioxygenase promotes gut microbiota-mediated metabolic health. Nat Med 2018;24:1113-20. DOI: https://doi.org/10.1038/s41591-018-0060-4
Suzuki Y, Suda T, Furuhashi K, et al. Increased serum kynurenine/tryptophan ratio correlates with disease progression in lung cancer. Lung Cancer 2010;67:361-5. DOI: https://doi.org/10.1016/j.lungcan.2009.05.001
Badawy AA, Guillemin G. The plasma [kynurenine]/[tryptophan] ratio and indoleamine 2, 3-dioxygenase: time for appraisal. Int J Tryptophan Res 2019;12:1-10. DOI: https://doi.org/10.1177/1178646919868978
Chen Y, Guillemin GJ. Kynurenine pathway metabolites in humans: disease and healthy states. Int J Tryptophan Res 2009:2:1-19. DOI: https://doi.org/10.4137/IJTR.S2097
Liu WL, Lin YH, Xiao H, et al. Epstein-Barr virus infection induces indoleamine 2, 3-dioxygenase expression in human monocyte-derived macrophages through p38/mitogen-activated protein kinase and NF-κB pathways: impairment in T cell functions. J Virol 2014;88:6660-71. DOI: https://doi.org/10.1128/JVI.03678-13
Gupta NK, Thaker AI, Kanuri N, et al. Serum analysis of tryptophan catabolism pathway: correlation with Crohn's disease activity. Inflamm Bowel Dis 2012;18:1214-20. DOI: https://doi.org/10.1002/ibd.21849
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun 2018;9:3294. DOI: https://doi.org/10.1038/s41467-018-05470-4
Khosravi M, Ghiasi Z, Ganjali A. A narrative review of research on healthcare staff’s burnout during the COVID-19 pandemic. Proceedings of Singapore Healthcare. 2022;31:1-6. DOI: https://doi.org/10.1177/20101058211040575
Hickie I, Davenport T, Wakefield D, et al. Post-infective and chronic fatigue syndromes precipitated by viral and non-viral pathogens: prospective cohort study. BMJ 2006;333:575. DOI: https://doi.org/10.1136/bmj.38933.585764.AE
Nicolson GL, Gan R, Haier J. Multiple co‐infections (mycoplasma, chlamydia, human herpes virus‐6) in blood of chronic fatigue syndrome patients: association with signs and symptoms. APMIS 2003;111:557-66. DOI: https://doi.org/10.1034/j.1600-0463.2003.1110504.x
Blomberg J, Gottfries CG, Elfaitouri A, et al. Infection elicited autoimmunity and myalgic encephalomyelitis/chronic fatigue syndrome: an explanatory model. Front Immunol 2018:9:229. DOI: https://doi.org/10.3389/fimmu.2018.00229
Maes M, Ringel K, Kubera M, et al. In myalgic encephalomyelitis/chronic fatigue syndrome, increased autoimmune activity against 5-HT is associated with immuno-inflammatory pathways and bacterial translocation. J Affect Disord 2013;150:223-30. DOI: https://doi.org/10.1016/j.jad.2013.03.029
Parrish CR, White L. D-Lactic acidosis: more prevalent than we think? Pract Gastroenterol 2015;39:26-45.
Khosravi M, Asl ST, Anamag AN, et al. Parenting styles, maladaptive coping styles, and disturbed eating attitudes and behaviors: a multiple mediation analysis in patients with feeding and eating disorders. PeerJ 2023:11:e14880. DOI: https://doi.org/10.7717/peerj.14880
Reyes M, Nisenbaum R, Hoaglin DC, et al. Prevalence and incidence of chronic fatigue syndrome in Wichita, Kansas. Arch Intern Med 2003;163:1530-6. DOI: https://doi.org/10.1001/archinte.163.13.1530
Schröder W, Sommer H, Gladstone BP, et al. Gender differences in antibiotic prescribing in the community: a systematic review and meta-analysis. J Antimicrob Chemother 2016;71:1800-6. DOI: https://doi.org/10.1093/jac/dkw054
Thambirajah AA, Sleigh K, Grant Stiver H, et al. Differential heat shock protein responses to strenuous standardized exercise in chronic fatigue syndrome patients and matched healthy controls. Clin Invest Med 2008;31:E319-27. DOI: https://doi.org/10.25011/cim.v31i6.4917
Shungu DC, Weiduschat N, Murrough JW, et al. Increased ventricular lactate in chronic fatigue syndrome. III. Relationships to cortical glutathione and clinical symptoms implicate oxidative stress in disorder pathophysiology. NMR Biomed 2012;25:1073-87. DOI: https://doi.org/10.1002/nbm.2772
Armstrong CW, McGregor NR, Lewis DP, et al. Metabolic profiling reveals anomalous energy metabolism and oxidative stress pathways in chronic fatigue syndrome patients. Metabolomics 2015;11:1626-39. DOI: https://doi.org/10.1007/s11306-015-0816-5
Jackson ML, Butt H, Ball M, Lewis DP, Bruck D. Sleep quality and the treatment of intestinal microbiota imbalance in chronic fatigue syndrome: a pilot study. Sleep Science. 2015;8:124-33. DOI: https://doi.org/10.1016/j.slsci.2015.10.001
Roman P, Carrillo-Trabalón F, Sánchez-Labraca N, et al. Are probiotic treatments useful on fibromyalgia syndrome or chronic fatigue syndrome patients? A systematic review. Benef Microbes 2018;9:603-11. DOI: https://doi.org/10.3920/BM2017.0125
Groeger D, O’Mahony L, Murphy EF, et al. Bifidobacterium infantis 35624 modulates host inflammatory processes beyond the gut. Gut Microbes 2013;4:325-39. DOI: https://doi.org/10.4161/gmic.25487
Venturini L, Bacchi S, Capelli E, et al. Modification of Immunological Parameters, Oxidative Stress Markers, Mood Symptoms, and Well‐Being Status in CFS Patients after Probiotic Intake: Observations from a Pilot Study. Oxidative Med Cellular Longev 2019;2019:1684198. DOI: https://doi.org/10.1155/2019/1684198
Suez J, Zmora N, Segal E, Elinav E. The pros, cons, and many unknowns of probiotics. Nat Med 2019;25:716-29. DOI: https://doi.org/10.1038/s41591-019-0439-x
Suez J, Zmora N, Zilberman-Schapira G, et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 2018;174:1406-1423.e16. DOI: https://doi.org/10.1016/j.cell.2018.08.047
Atabati H, Yazdanpanah E, Mortazavi H, et al. Immunoregulatory effects of tolerogenic probiotics in multiple sclerosis. Adv Exp Med Biol 2021:1286:87-105. DOI: https://doi.org/10.1007/978-3-030-55035-6_6
Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol 2018;83:1147-61. DOI: https://doi.org/10.1002/ana.25244
Takewaki D, Suda W, Sato W, et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. Proc Natl Acad Sci 2020;117:22402-12. DOI: https://doi.org/10.1073/pnas.2011703117
Hirschberg S, Gisevius B, Duscha A, et al. Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci 2019;20:3109. DOI: https://doi.org/10.3390/ijms20123109
Duscha A, Gisevius B, Hirschberg S, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell 2020;180:1067-1080.e16. DOI: https://doi.org/10.1016/j.cell.2020.02.035
Asarat M, Apostolopoulos V, Vasiljevic T, et al. Short-chain fatty acids regulate cytokines and Th17/Treg cells in human peripheral blood mononuclear cells in vitro. Immunol Invest 2016;45:205-22. DOI: https://doi.org/10.3109/08820139.2015.1122613
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 2013;341:569-73. DOI: https://doi.org/10.1126/science.1241165
Kacimi S, Ref'at A, Fararjeh MA, et al. Intermittent fasting during Ramadan attenuates proinflammatory cytokines and immune cells in healthy subjects. Nutr Res 2012;32:947-55. DOI: https://doi.org/10.1016/j.nutres.2012.06.021
Wilhelm C, Surendar J, Karagiannis F. Enemy or ally? Fasting as an essential regulator of immune responses. Trends Immunol 2021;42:389-400. DOI: https://doi.org/10.1016/j.it.2021.03.007
Youm YH, Nguyen KY, Grant RW, et al. The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome–mediated inflammatory disease. Nat Med 2015;21:263-9. DOI: https://doi.org/10.1038/nm.3804
Han K, Nguyen A, Traba J, et al. A pilot study to investigate the immune-modulatory effects of fasting in steroid-naive mild asthmatics. J Immunol 2018;201:1382-8. DOI: https://doi.org/10.4049/jimmunol.1800585
Ang QY, Alexander M, Newman JC, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell 2020;181:1263-1275.e16. DOI: https://doi.org/10.1016/j.cell.2020.04.027
Choi IY, Piccio L, Childress P, et al. A diet mimicking fasting promotes regeneration and reduces autoimmunity and multiple sclerosis symptoms. Cell Rep 2016;15:2136-46. DOI: https://doi.org/10.1016/j.celrep.2016.05.009
Moghaddam MF, Rakhshani T, Khosravi M. Effectiveness of methylphenidate supplemented by zinc, calcium, and magnesium for treatment of ADHD patients in the city of Zahedan. Shiraz E-Med J 2016;17:e40019. DOI: https://doi.org/10.17795/semj40019
Mandarano AH, Maya J, Giloteaux L, et al. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. The J Clin Invest 2020;130:1491-1505. DOI: https://doi.org/10.1172/JCI132185
Anderson G, Maes M. Mitochondria and immunity in chronic fatigue syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2020:103:109976. DOI: https://doi.org/10.1016/j.pnpbp.2020.109976
Craig C. Mitoprotective dietary approaches for myalgic encephalomyelitis/chronic fatigue syndrome: caloric restriction, fasting, and ketogenic diets. Med Hypotheses 2015;85:690-3. DOI: https://doi.org/10.1016/j.mehy.2015.08.013
Sweetman E, Kleffmann T, Edgar C, et al. A SWATH-MS analysis of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome peripheral blood mononuclear cell proteomes reveals mitochondrial dysfunction. J Transl Med 2020;18:365. DOI: https://doi.org/10.1186/s12967-020-02533-3
Hasan-Olive MM, Lauritzen KH, Ali M, et al. A ketogenic diet improves mitochondrial biogenesis and bioenergetics via the PGC1α-SIRT3-UCP2 axis. Neurochem Res 2019;44:22-37. DOI: https://doi.org/10.1007/s11064-018-2588-6
Storoni M, Plant GT. The therapeutic potential of the ketogenic diet in treating progressive multiple sclerosis. Mult Scler Int 2015:2015:681289. DOI: https://doi.org/10.1155/2015/681289
Huang Q, Ma S, Tominaga T, et al. An 8-week, low carbohydrate, high fat, ketogenic diet enhanced exhaustive exercise capacity in mice part 2: effect on fatigue recovery, post-exercise biomarkers and anti-oxidation capacity. Nutrients 2018;10:1339. DOI: https://doi.org/10.3390/nu10101339
Hernandez AR, Hernandez CM, Campos K, et al. A ketogenic diet improves cognition and has biochemical effects in prefrontal cortex that are dissociable from hippocampus. Front Aging Neurosci 2018:10:391. DOI: https://doi.org/10.3389/fnagi.2018.00391
Brenton JN, Banwell B, Bergqvist AC, et al. Pilot study of a ketogenic diet in relapsing-remitting MS. Neurol Neuroimmunol Neuroinflamm 2019;6:e565. DOI: https://doi.org/10.1212/NXI.0000000000000565
Phillips MC, Murtagh DK, Gilbertson LJ, et al. Low‐fat versus ketogenic diet in Parkinson’s disease: a pilot randomized controlled trial. Mov Disord 2018;33:1306-14. DOI: https://doi.org/10.1002/mds.27390
Bauersfeld SP, Kessler CS, Wischnewsky M, et al. The effects of short-term fasting on quality of life and tolerance to chemotherapy in patients with breast and ovarian cancer: a randomized cross-over pilot study. BMC Cancer 2018;18:476. DOI: https://doi.org/10.1186/s12885-018-4353-2
Khosravi M, Mirbahaadin M, Kasaeiyan R. Understanding the influence of high novelty-seeking on academic burnout: moderating effect of physical activity. Eur J Transl Myol 2020;30:318-24. DOI: https://doi.org/10.4081/ejtm.2020.8722
Olson CA, Vuong HE, Yano JM, et al. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell 2018;174:497. DOI: https://doi.org/10.1016/j.cell.2018.06.051
Nagpal R, Neth BJ, Wang S, et al. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer's disease markers in subjects with mild cognitive impairment. EBioMedicine 2019:47:529-42. DOI: https://doi.org/10.1016/j.ebiom.2019.08.032
Fan Y, Wang H, Liu X, et al. Crosstalk between the ketogenic diet and epilepsy: from the perspective of gut microbiota. Mediators Inflamm 2019:2019:8373060. DOI: https://doi.org/10.1155/2019/8373060
Khosravi M, Hassani F. The protective effect of emotional intelligence on suicidality: A multiple mediation model among patients with borderline personality disorder. Pers Individ Dif 2022;189:111488. DOI: https://doi.org/10.1016/j.paid.2021.111488
Campagnolo N, Johnston S, Collatz A, et al. Dietary and nutrition interventions for the therapeutic treatment of chronic fatigue syndrome/myalgic encephalomyelitis: a systematic review. J Hum Nutr Diet 2017;30:247-59. DOI: https://doi.org/10.1111/jhn.12435
Bjørklund G, Dadar M, Pen JJ, et al. Chronic fatigue syndrome (CFS): Suggestions for a nutritional treatment in the therapeutic approach. Biomed Pharmacother 2019:109:1000-7. DOI: https://doi.org/10.1016/j.biopha.2018.10.076
Castro‐Marrero J, Sáez‐Francàs N, Santillo D, et al. Treatment and management of chronic fatigue syndrome/myalgic encephalomyelitis: all roads lead to Rome. Br J Pharmacol 2017;174:345-69. DOI: https://doi.org/10.1111/bph.13702
Putnam EE, Goodman AL. B vitamin acquisition by gut commensal bacteria. PLoS Pathog 2020;16:e1008208. DOI: https://doi.org/10.1371/journal.ppat.1008208
Soto-Martin EC, Warnke I, Farquharson FM, et al. Vitamin biosynthesis by human gut butyrate-producing bacteria and cross-feeding in synthetic microbial communities. mBio 2020;11:e00886-20. DOI: https://doi.org/10.1128/mBio.00886-20
Costliow ZA, Degnan PH. Thiamine acquisition strategies impact metabolism and competition in the gut microbe Bacteroides thetaiotaomicron. mSystems 2017;2:e00116-17. DOI: https://doi.org/10.1128/mSystems.00116-17
Wang T, Xu C, Pan K, et al. Acupuncture and moxibustion for chronic fatigue syndrome in traditional Chinese medicine: a systematic review and meta-analysis. BMC Complement Altern Med 2017;17:163. DOI: https://doi.org/10.1186/s12906-017-1647-x
Lu C, Yang XJ, Hu J. Randomized controlled clinical trials of acupuncture and moxibustion treatment of chronic fatigue syndrome patients. Zhen Ci Yan Jiu 2014;39:313-7.
Arring NM, Millstine D, Marks LA, et al. Ginseng as a treatment for fatigue: a systematic review. J Altern Complement Med 2018;24:624-33. DOI: https://doi.org/10.1089/acm.2017.0361
Kim DH. Gut microbiota-mediated pharmacokinetics of ginseng saponins. J Ginseng Res 2018;42:255-63. DOI: https://doi.org/10.1016/j.jgr.2017.04.011
Zhang L, Li F, Qin WJ, et al. Changes in intestinal microbiota affect metabolism of ginsenoside Re. Biomed Chromatogr 2018;32:e4284. DOI: https://doi.org/10.1002/bmc.4284

How to Cite

El-Sehrawy , A. A. M. A., Ayoub, I. I., Uthirapathy, S., Ballal, S., Gabble, B. C., Singh, A., V, K., Panigrahi, R., Kamali, M., & Khosravi, M. (2025). The Microbiota-Gut-Brain Axis in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Narrative Review of an Emerging Field. European Journal of Translational Myology. https://doi.org/10.4081/ejtm.2025.13690

Similar Articles

You may also start an advanced similarity search for this article.