Research into the physiology of myosins - a personal odyssey

Authors

During my PhD, I worked on the neural regulation of mechanical properties fast and slow muscles. This led me to believe that myosins in fast and slow muscles are structurally distinct and that motor nerves regulate the expression of myosin genes. I devised a method for separating intact fast and slow myosins by gel electrophoresis and confirmed their neural regulation. The electrophoresis method was subsequently improved and used to analyse skeletal and cardiac myosin isoforms in various vertebrate species, including marsupials. This led to the discovery of neonatal myosin heavy chain (MyHC), a and b cardiac MyHCs and of the regulation of cardiac MyHCs by thyroid hormone. Antibodies were raised against 2A, 2X, 2B, masticatory and extraocular MyHCs and used to study the expression and regulation of MyHCs in jaw, laryngeal and Extraocular Muscle (EOM) fibres. Antibodies against masticatory myosin enabled the sequencing of masticatory MyHC and masticatory light chain 2 genes. Cross-bridge kinetics of fibres with different myosin isoforms were analysed. Different MyHC isoforms found in jaw-closing muscles across various species reflected evolutionary adaptations to diverse dietary intake, while MyHC expression changes in cardiac and laryngeal muscles with body mass reflected adaptations to changes in their specific metabolic rate. Transplantation experiments on masticatory and EOMs and cross-innervation experiments between laryngeal and somitic muscles revealed that their capacity to express masticatory or extraocular MyHC were myogenically determined but neural impulse patterns also influence MyHC expression. EOMs are the most complex, expressing 11 MyHC isoforms. Some EOM fibres express faster MyHCs in the endplate zone but slower MyHCs at the end segments, an arrangement helping to linearize the saccade. I suggested that during development, primary and secondary extraocular myotubes specify the synaptic inputs of the innervating neurons to generate impulse patterns which regulate the expression of their MyHCs.

Buller AJ, Eccles JC, Eccles RM. Differentiation of fast and slow muscles in the cat hind limb. J Physiol 1960;150:399-416. DOI: https://doi.org/10.1113/jphysiol.1960.sp006394
Buller AJ, Eccles JC, Eccles RM. Interactions between motoneurons and muscles in respect of the characteristic speeds of their responses. J Physiol 1960;150:417-39 DOI: https://doi.org/10.1113/jphysiol.1960.sp006395
Close R. Dynamic properties of fast and slow skeletal muscles of the rat during development. J Physiol 1964;173:74-95. DOI: https://doi.org/10.1113/jphysiol.1964.sp007444
Close R. Force:velocity properties of mouse muscles. Nature 1965;206:718-9. DOI: https://doi.org/10.1038/206718a0
Close R. Effects of cross-union of motor nerves to fast and slow skeletal muscles. Nature 1965;206:831-2. DOI: https://doi.org/10.1038/206831a0
Close R, Hoh JF. Force:velocity pproperties of kitten muscles. J Physiol. 1967;192:815-22. DOI: https://doi.org/10.1113/jphysiol.1967.sp008333
Close R, Hoh JF. Influence of temperature on isometric contractions of rat skeletal muscles. Nature 1968;217:1179-80. DOI: https://doi.org/10.1038/2171179a0
Close R, Hoh JFY. The after-effects of repetitive stimulation on the isometric twitch contraction of rat fast skeletal muscle. J Physiol 1968;197:461-77. DOI: https://doi.org/10.1113/jphysiol.1968.sp008570
Close R, Hoh JFY. Post-tetanic potentiation of twitch contractions of cross-innervated rat fast and slow muscles. Nature 1969;221:179-81. DOI: https://doi.org/10.1038/221179a0
Hoh JFY. Neural regulation of muscle activation. Exp Neurol 1974;45:241-56. DOI: https://doi.org/10.1016/0014-4886(74)90116-2
Hník P, Jirmanová I, Vyklický L, Zelená J. Fast and slow muscles of the chick after nerve cross-union. J Physiol 1967;193:309-25. DOI: https://doi.org/10.1113/jphysiol.1967.sp008359
Feng TP, Wu WY, Yang FY. Selective reinnervation of a 'slow' or 'fast' muscle by its original motor supply during regeneration of mixed nerve. Scientia Sin 1965;14:1717-20.
Close R, Hoh JF. Effects of nerve cross-union on fast-twitch and slow-graded muscle fibres in the toad. J Physiol 1968;198:103-25. DOI: https://doi.org/10.1113/jphysiol.1968.sp008596
Barany M. ATPase activity of myosin correlated with speed of muscle shortening. J Gen Physiol 1967;50:197-218. DOI: https://doi.org/10.1085/jgp.50.6.197
Barany M, Close RI. The transformation of myosin in cross-innervated rat muscles. J Physiol 1971;213:455-74. DOI: https://doi.org/10.1113/jphysiol.1971.sp009393
Hoh JFY, Salafsky B. Effects of nerve cross-union on rat intracellular potassium in fast-twitch and slow-twitch rat muscles. J Physiol. 1971;216:171-9. DOI: https://doi.org/10.1113/jphysiol.1971.sp009516
Brahms J, Brezner J. Interaction of myosin A with ions. Arch Biochem Biophys 1961;95:219-28. DOI: https://doi.org/10.1016/0003-9861(61)90138-2
Hoh JF. Neural regulation of mammalian fast and slow muscle myosins: an electrophoretic analysis. Biochemistry 1975;14:742-7. DOI: https://doi.org/10.1021/bi00675a015
Sohn RL, Vikstrom KL, Strauss M, et al. A 29 residue region of the sarcomeric myosin rod is necessary for filament formation. J Mol Biol 1997;266:317-30. DOI: https://doi.org/10.1006/jmbi.1996.0790
Thompson RC, Buvoli M, Buvoli A, Leinwand LA. Myosin filament assembly requires a cluster of four positive residues located in the rod domain. FEBS Lett 2012;586:3008-12. DOI: https://doi.org/10.1016/j.febslet.2012.06.019
Hoh JFY, mcgrath PA, White RI. Electrophoretic analysis of multiple forms of myosin in fast-twitch and slow-twitch muscles of the chick. Biochem J 1976;157:87-95. DOI: https://doi.org/10.1042/bj1570087
Hoh JFY. Light chain distribution of chicken skeletal muscle myosin isoenzymes. FEBS Lett 1978;90:297-300. DOI: https://doi.org/10.1016/0014-5793(78)80390-1
Hoh JFY, Yeoh GPS. Rabbit skeletal myosin isoenzymes from foetal, fast-twitch and slow-twitch muscles. Nature 1979;280:321-3. DOI: https://doi.org/10.1038/280321a0
Hoh JFY, Kwan BTS, Dunlop C, Kim BH. Effects of nerve cross-union and cordotomy on myosin isoenzymes in fast-twitch and slow-twitch muscles of the rat. In: Pette D, ed. Plasticity of Muscle. Berlin & New York: Walter de Gruyter & Co; 1980:339-52. DOI: https://doi.org/10.1515/9783110837483-028
Fitzsimons RB, Hoh JF. Isomyosins in human type 1 and type 2 skeletal muscle fibres. Biochem J 1981;193:229-33. DOI: https://doi.org/10.1042/bj1930229
Fitzsimons RB, Hoh JF. Myosin isoenzymes in fast-twitch and slow-twitch muscles of normal and dystrophic mice. J Physiol 1983;343:539-50. DOI: https://doi.org/10.1113/jphysiol.1983.sp014908
Whalen RG, Sell SM, Butler-Browne GS, et al. Three myosin heavy-chain isozymes appear sequentially in rat muscle development. Nature 1981;292:805-9. DOI: https://doi.org/10.1038/292805a0
Fitzsimons RB, Hoh JF. Embryonic and foetal myosins in human skeletal muscle. The presence of foetal myosins in Duchenne muscular dystrophy and infantile spinal muscular atrophy. J Neurol Sci. 1981;52:367-84. DOI: https://doi.org/10.1016/0022-510X(81)90018-6
Hoh JFY, mcgrath PA, Hale PT. Electrophoretic analysis of multiple forms of rat cardiac myosin: effects of hypophysectomy and thyroxine replacement. J Mol Cell Cardiol 1978;10:1053-76. DOI: https://doi.org/10.1016/0022-2828(78)90401-7
Hoh JF, Yeoh GP, Thomas MA, Higginbottom L. Structural differences in the heavy chains of rat ventricular myosin isoenzymes. FEBS Lett 1979;97:330-4. DOI: https://doi.org/10.1016/0014-5793(79)80115-5
Hoh JFY, Egerton LJ. Action of triiodothyronine on the synthesis of rat ventricular myosin isoenzymes. FEBS Lett 1979;101:143-8. DOI: https://doi.org/10.1016/0014-5793(79)81313-7
Pope B, Hoh JF, Weeds A. The ATPase activities of rat cardiac myosin isoenzymes. FEBS Lett 1980;118:205-8. DOI: https://doi.org/10.1016/0014-5793(80)80219-5
Rossmanith GH, Tjokorda OB. Relationships between isometric and isotonic mechanical parameters and cross-bridge kinetics. Clin Exp Pharmacol Physiol 1998;25:522-35. DOI: https://doi.org/10.1111/j.1440-1681.1998.tb02246.x
Rossmanith GH, Hoh JF, Kirman A, Kwan LJ. Influence of V1 and V3 isomyosins on the mechanical behaviour of rat papillary muscle as studied by pseudo-random binary noise modulated length perturbations. J Muscle Res Cell Motil 1986;7:307-19. DOI: https://doi.org/10.1007/BF01753651
Loiselle DS, Wendt IR, Hoh JF. Energetic consequences of thyroid-modulated shifts in ventricular isomyosin distribution in the rat. J Muscle Res Cell Motil 1982;3:5-23. DOI: https://doi.org/10.1007/BF00711877
Rossmanith GH, Hamilton AM, Hoh JF. Influence of myosin isoforms on tension cost and crossbridge kinetics in skinned rat cardiac muscle. Clin Exp Pharmacol Physiol 1995;22:423-9. DOI: https://doi.org/10.1111/j.1440-1681.1995.tb02034.x
Pauletto P, Scannapieco G, Angelini A, et al. Ventricular and aortic myosin in hypothyroid and hyperthyroid broad breasted white turkeys. Int J Tissue React 1986;8;505-11.
Pauletto P, Vescovo G, Scannapieco G, Angelini A, Pessina AC, Dalla Libera L, Carraro U, Dal Palù C. Changes in rat ventricular isomyosins with regression of cardiac hypertrophy. Hypertension 1986;8;1143-8. DOI: https://doi.org/10.1161/01.HYP.8.12.1143
Hoh JF, Kim Y, Lim JH, et al. Marsupial cardiac myosins are similar to those of eutherians in subunit composition and in the correlation of their expression with body size. J Comp Physiol B 2007;177:153-63. DOI: https://doi.org/10.1007/s00360-006-0117-4
Morano I, Haase H. Different actin affinities of human cardiac essential myosin light chain isoforms. FEBS Lett 1997;408:71-4. DOI: https://doi.org/10.1016/S0014-5793(97)00390-6
Bottinelli R, Canepari M, Cappelli V, Reggiani C. Maximum speed of shortening and ATPase activity in atrial and ventricular myocardia of hyperthyroid rats. Am J Physiol Cell Physiol 1995;38:C785-C90. DOI: https://doi.org/10.1152/ajpcell.1995.269.3.C785
Hoh JFY, Rossmanith GH, Kwan LJ, Hamilton AM. Adrenaline increases the rate of cycling of crossbridges in rat cardiac muscle as measured by pseudo-random binary noise-modulated perturbation analysis. Circ Res 1988;62:452-61. DOI: https://doi.org/10.1161/01.RES.62.3.452
Berman MR, Peterson JN, Yue DT, Hunter WC. Effect of isoproterenol on force transient time course and on stiffness spectra in rabbit papillary muscle in barium contracture. J Mol Cell Cardiol 1988;20:415-26. DOI: https://doi.org/10.1016/S0022-2828(88)80133-0
Saeki Y, Shiozawa K, Yanagisawa K, Shibata T. Adrenaline increases the rate of cross-bridge cycling in rat cardiac muscle. J Mol Cell Cardiol 1990;22:453-60. DOI: https://doi.org/10.1016/0022-2828(90)91480-U
Hoh JF, Rossmanith GH, Hamilton AM. Effects of dibutyryl cyclic AMP, ouabain, and xanthine derivatives on crossbridge kinetics in rat cardiac muscle. Circ Res 1991;68:702-13. DOI: https://doi.org/10.1161/01.RES.68.3.702
Venema RC, Raynor RL, Noland TAJ, Kuo JF. Role of protein kinase C in the phosphorylation of cardiac myosin light chain 2. Biochem J 1993;294:401-6. DOI: https://doi.org/10.1042/bj2940401
Turnbull L, Hoh JFY, Ludowyke RI, Rossmanith GH. Troponin I phosphorylation enhances crossbridge kinetics during β-adrenergic stimulation in rat cardiac tissue. J Physiol 2002;542:911-20. DOI: https://doi.org/10.1113/jphysiol.2002.022707
Kentish JC, McCloskey DT, Layland J, et al. Phosphorylation of troponin I by protein kinase A accelerates relaxation and crossbridge cycle kinetics in mouse ventricular muscle. Cir Res 2001;88:1059-65. DOI: https://doi.org/10.1161/hh1001.091640
Pauletto P, Dalla Libera L, Vescovo G, et al. Propranolol-induced changes in ventricular isomyosin composition in the rat. Am Heart J 1985;09;1269-73. DOI: https://doi.org/10.1016/0002-8703(85)90350-3
Rossmanith GH, Hoh JF, Turnbull L, Ludowyke RI. Mechanism of action of endothelin in rat cardiac muscle: cross-bridge kinetics and myosin light chain phosphorylation. J Physiol 1997;505:217-27. DOI: https://doi.org/10.1111/j.1469-7793.1997.217bc.x
Hoh JFY, Hughes S, Hale PT, Fitzsimons RB. Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat limb fast and slow muscles during postnatal development. J Muscle Res Cell Motil 1988;9:30-47. DOI: https://doi.org/10.1007/BF01682146
Zhong WW, Withers KW, Hoh JF. Effects of hypothyroidism on myosin heavy chain composition and fibre types of fast skeletal muscles in a small marsupial, Antechinus flavipes. J Comp Physiol B 2010;180:531-44. DOI: https://doi.org/10.1007/s00360-009-0431-8
Cossu G, Biressi S. Satellite cells, myoblasts and other occasional myogenic progenitors: possible origin, phenotypic features and role in muscle regeneration. Semin Cell Dev Biol 2005;16:623-31. DOI: https://doi.org/10.1016/j.semcdb.2005.07.003
Hoh JFY. Developmental, physiologic and phylogenetic perspectives on the expression and regulation of myosin heavy chains in mammalian skeletal muscles. J Comp Physiol B 2023;193:355-82. DOI: https://doi.org/10.1007/s00360-023-01499-0
Westgaard RH, Lomo T. Control of contractile properties within adaptive ranges by patterns impulse activity in the rat. J Neurosci 1988;8:4415-26. DOI: https://doi.org/10.1523/JNEUROSCI.08-12-04415.1988
Qin H, Morris BJ, Hoh JFY. Isolation and structure of cat superfast myosin light chain-2 cdna and evidence for the identity of its human homologue. Biochem Biophys Res Commun 1994;200:1277-82. DOI: https://doi.org/10.1006/bbrc.1994.1589
Qin H, Hsu MK, Morris BJ, Hoh JF. A distinct subclass of mammalian striated myosins: structure and molecular evolution of 'superfast' or masticatory myosin heavy chain. J Mol Evol 2002;55:544-52. DOI: https://doi.org/10.1007/s00239-002-2349-6
Hoh JFY, Hughes S. Myogenic and neurogenic regulation of myosin gene expression in cat jaw-closing muscles regenerating in fast and slow limb muscle beds. J Muscle Res Cell Motil 1988;9:59-72. DOI: https://doi.org/10.1007/BF01682148
Hoh JFY, Hughes S, Chow C, et al. Immunocytochemical and electrophoretic analyses of changes in myosin gene expression in cat posterior temporalis muscle during postnatal development. J Muscle Res Cell Motil 1988;9:48-58. DOI: https://doi.org/10.1007/BF01682147
Hoh JFY, Hughes S. Immunocytochemical analysis of the perinatal development of cat masseter muscle using anti-myosin antibodies. J Muscle Res Cell Motil 1989;10:312-25. DOI: https://doi.org/10.1007/BF01758427
Lucas CA, Rughani A, Hoh JF. Expression of extraocular myosin heavy chain in rabbit laryngeal muscle. J Muscle Res Cell Motil 1995;16:368-78. DOI: https://doi.org/10.1007/BF00114502
Lucas CA, Hoh JF. Distribution of developmental myosin heavy chains in adult rabbit extraocular muscle: identification of a novel embryonic isoform absent in fetal limb. Invest Ophthal Vis Sci 2003;44:2450-6. DOI: https://doi.org/10.1167/iovs.02-1109
Kang LH, Rughani A, Walker ML, et al. Expression of masticatory-specific isoforms of myosin heavy-chain, myosin-binding protein-C and tropomyosin in muscle fibers and satellite cell cultures of cat masticatory muscle. J Histochem Cytochem 2010;58:623-34. DOI: https://doi.org/10.1369/jhc.2010.955419
Kang LH, Hoh JF. Regulation of jaw-specific isoforms of myosin-binding protein-C and tropomyosin in regenerating cat temporalis muscle innervated by limb fast and slow motor nerves. J Histochem Cytochem 2010;58:989-1004. DOI: https://doi.org/10.1369/jhc.2010.956847
Lucas CA, Kang LH, Hoh JF. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochem Biophys Res Commun 2000;272:303-8. DOI: https://doi.org/10.1006/bbrc.2000.2768
Zhong WW, Lucas CA, Kang LH, Hoh JF. Electrophoretic and immunochemical evidence showing that marsupial limb muscles express the same fast and slow myosin heavy chains as eutherians. Electrophoresis 2001;22:1016-20. DOI: https://doi.org/10.1002/1522-2683()22:6<1016::AID-ELPS1016>3.0.CO;2-K
Zhong WW, Lucas CA, Hoh JF. Myosin isoforms and fibre types in limb muscles of Australian marsupials: adaptations to hopping and non-hopping locomotion. J Comp Physiol B 2008;178:47-55. DOI: https://doi.org/10.1007/s00360-007-0198-8
Biewener AA, Blickhan R. Kangaroo rat locomotion: design for elastic energy storage or acceleration? J Exp Biol 1988;140:243-55. DOI: https://doi.org/10.1242/jeb.140.1.243
Hoh JF, Withers KW, Zhong WW. Heterogeneity of alpha-cardiac myosin heavy chains in a small marsupial, Antechinus flavipes, and the effect of hypothyroidism on its ventricular myosins. J Comp Physiol B 2008;178:279-84. DOI: https://doi.org/10.1007/s00360-007-0220-1
Kim Y, Lucas CA, Zhong WW, Hoh JF. Developmental changes in ventricular myosin isoenzymes of the tammar wallaby. J Comp Physiol B 2007;177:701-5. DOI: https://doi.org/10.1007/s00360-007-0168-1
Rowlerson A, Pope B, Murray J, Whalen RG, Weeds AG. A novel myosin present in cat jaw-closing muscles. J Musc Res Cell Motil 1981;2:415-38. DOI: https://doi.org/10.1007/BF00711968
Saeki Y, Kato C, Satomi M, Yanagisawa K. ATPase activity and tension development in mechanically-skinned feline jaw muscle. Arch Oral Biol 1987;32:207-10. DOI: https://doi.org/10.1016/0003-9969(87)90136-1
Hoh JF. 'Superfast' or masticatory myosin and the evolution of jaw-closing muscles of vertebrates. J Exp Biol 2002;205:2203-10. DOI: https://doi.org/10.1242/jeb.205.15.2203
Hoh JF, Li ZB, Qin H, Hsu MK, Rossmanith GH. Cross-bridge kinetics of fast and slow fibres of cat jaw and limb muscles: correlations with myosin subunit composition. J Muscle Res Cell Motil 2007;28:329-41. DOI: https://doi.org/10.1007/s10974-008-9129-x
Wu X, Li ZF, Brooks R, et al. Autoantibodies in canine masticatory muscle myositis recognize a novel myosin binding protein-C family member. J Immunol 2007;179:4939-44. DOI: https://doi.org/10.4049/jimmunol.179.7.4939
Stewart MA, Franks-Skiba K, Chen S, Cooke R. Myosin ATP turnover rate is a mechanism involved in thermogenesis in resting skeletal muscle fibers. Proc Natl Acad Sci USA 2010;107:430-5. DOI: https://doi.org/10.1073/pnas.0909468107
Heling L, Geeves MA, Kad NM. MyBP-C: one protein to govern them all. J Muscle Res Cell Motil 2020;41:91-101. DOI: https://doi.org/10.1007/s10974-019-09567-1
Ponnam S, Sevrieva I, Sun YB, et al. Site-specific phosphorylation of myosin binding protein-C coordinates thin and thick filament activation in cardiac muscle. Proc Natl Acad Sci USA 2019;116:15485-94. DOI: https://doi.org/10.1073/pnas.1903033116
Gruen M, Prinz H, Gautel M. cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion. FEBS Lett 1999;453:254-9. DOI: https://doi.org/10.1016/S0014-5793(99)00727-9
Kensler RW, Craig R, Moss RL. Phosphorylation of cardiac myosin binding protein-C releases myosin heads from the surface of cardiac thick filaments. Proc Natl Acad Sci USA 2017;114:E1355-E64. DOI: https://doi.org/10.1073/pnas.1614020114
Yamaguchi M, Takemori S, Kimura M, et al. Protruding masticatory (superfast) myosin heads from staggered thick filaments of dog jaw muscle revealed by X-ray diffraction. J Biochem 2010;147:53-61. DOI: https://doi.org/10.1093/jb/mvp143
Yamaguchi M, Kimura M, Li ZB, et al. X-ray diffraction analysis of the effects of myosin regulatory light chain phosphorylation and butanedione monoxime on skinned skeletal muscle fibers. Am J Physiol Cell Physiol 2016;310:C692-700. DOI: https://doi.org/10.1152/ajpcell.00318.2015
Hoh JFY, Hughes S, Walker ML, et al. Slow myosin heavy chains in cat jaw and limb muscles are phenotypically distinct: expression of jaw-specific slow myosin phenotype in regenerated and chronically stimulated jaw muscles. Basic Appl Myol 1991;1:285-94.
Reiser PJ, Bicer S, Patel R, et al. The myosin light chain 1 isoform associated with masticatory myosin heavy chain in mammals and reptiles is embryonic/atrial MLC1. J Exp Biol 2010;213:1633-42. DOI: https://doi.org/10.1242/jeb.039453
Hoh JFY, Hughes S, Hugh G, Pozgaj I. Three hierarchies in skeletal muscle fibre classification: allotype, isotype and phenotype. In: F.Stockdale, L.Kedes, eds. Cellular and Molecular Biology of Muscle Development. UCLA Symposium on Molecular and Cellular Biology, New Series, vol. 93. New York: Alan R. Liss Inc.; 1989:15-26.
Hoh JFY, Hughes S. Expression of superfast myosin in aneural regenerates of cat jaw muscle. Muscle & Nerve 1991;14:316-25. DOI: https://doi.org/10.1002/mus.880140405
Pette D, Vrbova G. Adaptation of mammalian skeletal muscle fibers to chronic electrical stimulation. In: M.P.Blaustein, H.Grunicke, E.Habermann, Pette D, Reuter H, Sakemann B, Schweiger M, Wright EM, eds. Reviews of Physiology, Biochemistry and Pharmacology, vol 120. 120 ed. Heidelberger Platz 3/W-1000 Berlin 33/Germany: Springer-Verlag; 1992:115-202. DOI: https://doi.org/10.1007/BFb0036123
Kang LH, Hoh JF. Chronic low-frequency stimulation transforms cat masticatory muscle fibers into jaw-slow fibers. J Histochem Cytochem 2011;59:849-63. DOI: https://doi.org/10.1369/0022155411413817
Collins JH. Myoinformatics report: myosin regulatory light chain paralogs in the human genome. J Muscle Res Cell Motil 2006;27:69-74. DOI: https://doi.org/10.1007/s10974-006-9057-6
Kang LHD, Hughes S, Pettigrew JD, Hoh JFY. Jaw-specific myosin heavy chain gene expression in sheep, dog, monkey, flying fox and microbat jaw-closing muscles. Basic Appl Myol 1994;4:381-92.
Stedman HH, Kozyak BW, Nelson A, et al. Myosin gene mutation correlates with anatomical changes in the human lineage. Nature 2004;428:415-8. DOI: https://doi.org/10.1038/nature02358
Hoh JFY, Lim JHY, Kang LDH, Lucas CA. Expression of superfast myosin in the jaw-closing muscles of Crocodylus porosus. In: Grigg GC, Seebacher F, Franklin CE, eds. Crocodilian Biology and Evolution. Chipping Norton: Surrey Beatty & Sons; 2001:156-64.
Sfondrini G, Reggiani C, Gandini P, et al. Adaptations of masticatory muscles to a hyperpropulsive appliance in the rat. Am J Orthod Dentofacial Orthop 1996;110:612-7. DOI: https://doi.org/10.1016/S0889-5406(96)80037-0
Hoh JF, Kang LH, Sieber LG, et al. Myosin isoforms and fibre types in jaw-closing muscles of Australian marsupials. J Comp Physiol B 2006;176:685-95. DOI: https://doi.org/10.1007/s00360-006-0091-x
Hoh JF, Kim Y, Sieber LG, et al. Jaw-closing muscles of kangaroos express alpha-cardiac myosin heavy chain. J Muscle Res Cell Motil 2000;21:673-80. DOI: https://doi.org/10.1023/A:1005676106940
Hoh JF. Laryngeal muscle fibre types. Acta Physiol Scand 2005;183:133-49. DOI: https://doi.org/10.1111/j.1365-201X.2004.01402.x
Sartore S, Mascarello F, Rowlerson A, Gorza L, Ausoni S, Vianello M, Schiaffino S. Fibre types in extraocular muscles: a new myosin isoform in the fast fibres. J Muscle Res Cell Motil 1987;8:161-72. DOI: https://doi.org/10.1007/BF01753992
Close RI, Luff AR. Dynamic properties of inferior rectus muscle of the rat. J Physiol 1974;236:259-70. DOI: https://doi.org/10.1113/jphysiol.1974.sp010434
Asmussen G, Beckers-Bleukx G, Marechal G. The force-velocity relation of the rabbit inferior oblique muscle; influence of temperature. Pflugers Arch 1994;426:542-7. DOI: https://doi.org/10.1007/BF00378532
Rhee HS, Lucas CA, Hoh JF. Fiber types in rat laryngeal muscles and their transformations after denervation and reinnervation. J Histochem Cytochem 2004;52:581-90. DOI: https://doi.org/10.1177/002215540405200503
Rhee HS, Hoh JF. Immunohistochemical analysis of the effects of cross-innervation of murine thyroarytenoid and sternohyoid muscles. J Histochem Cytochem 2010;58:1057-65. DOI: https://doi.org/10.1369/jhc.2010.956706
Mcmahon T. Size and shape in biology. Science 1973;179:1201-4. DOI: https://doi.org/10.1126/science.179.4079.1201
Kleiber M. The fire of life. An introduction to animal energetics. New York: Wiley; 1961.
Dawson TJ, Hulbert AJ. Standard metabolism, body temperature, and surface areas of Australian marsupials. Am J Physiol 1970;218:1233-8. DOI: https://doi.org/10.1152/ajplegacy.1970.218.4.1233
Stahl WR. Scaling of respiratory variables in mammals. J Appl Physiol 1967;22:453-60. DOI: https://doi.org/10.1152/jappl.1967.22.3.453
Pellegrino MA, Canepari M, Rossi R, et al. Orthologous myosin isoforms and scaling of shortening velocity with body size in mouse, rat, rabbit and human muscles. J Physiol 2003;546:677-89. DOI: https://doi.org/10.1113/jphysiol.2002.027375
Rhee HS, Hoh JF. Immunohistochemical analysis of myosin heavy chain expression in laryngeal muscles of the rabbit, cat, and baboon. J Histochem Cytochem 2008;56:929-50. DOI: https://doi.org/10.1369/jhc.2008.951756
Wu YZ, Crumley RL, Caiozzo VJ. Are hybrid fibers a common motif of canine laryngeal muscles? Single-fiber analyses of myosin heavy-chain isoform composition. Arch Otolaryngol Head Neck Surg 2000;126:865-73. DOI: https://doi.org/10.1001/archotol.126.7.865
Rhee HS, Steel CM, Derksen FJ, et al. Immunohistochemical analysis of laryngeal muscles in normal horses and horses with subclinical recurrent laryngeal neuropathy. J Histochem Cytochem 2009;57:787-800. DOI: https://doi.org/10.1369/jhc.2009.953844
Li ZB, Lehar M, Nakagawa H, et al. Differential expression of myosin heavy chain isoforms between abductor and adductor muscles in the human larynx. Otolaryngol Head Neck Surg 2004;130:217-22. DOI: https://doi.org/10.1016/j.otohns.2003.09.009
Asmussen G, Traub I, Pette D. Electrophoretic analysis of myosin heavy chain isoform patterns in extraocular muscles of the rat. FEBS Lett 1993;335:243-5. DOI: https://doi.org/10.1016/0014-5793(93)80738-G
Wieczorek DF, Periasamy M, Butler-Browne GS, et al. Co-expression of multiple myosin heavy chain genes, in addition to a tissue-specific one, in extraocular musculature. J Cell Biol 1985;101:618-29. DOI: https://doi.org/10.1083/jcb.101.2.618
Rushbrook JI, Weiss C, Ko K, et al. Identification of alpha-cardiac myosin heavy chain mrna and protein in extraocular muscle of the adult rabbit. J Muscle Res Cell Motil 1994;15:505-15. DOI: https://doi.org/10.1007/BF00121157
Lucas CA, Hoh JFY. Extraocular fast myosin heavy chain expression in the Levator Palpebrae and Retractor Bulbi muscles. Invest Opthalmol Vis Sci 1997;38:2817-25.
Pierobon-Bormioli S, Sartore S, Vitadello M, Schiaffino S. Slow myosins in vertebrate skeletal muscle. An immunofluorescence study. J Cell Biol 1980;85:675-81. DOI: https://doi.org/10.1083/jcb.85.3.672
Rossi AC, Mammucari C, Argentini C, Reggiani C, Schiaffino S. Two novel/ancient myosins in mammalian skeletal muscles: MYH14/7b and MYH15 are expressed in extraocular muscles and muscle spindles. J Physiol 2010;588:353-64. DOI: https://doi.org/10.1113/jphysiol.2009.181008
Moncman CL, Andrade FH. Nonmuscle myosin IIB, a sarcomeric component in the extraocular muscles. Exp Cell Res 2010;316:1958-65. DOI: https://doi.org/10.1016/j.yexcr.2010.03.018
Li ZB, Rossmanith GH, Hoh JF. Cross-bridge kinetics of rabbit single extraocular and limb muscle fibers. Invest Opthalmol Vis Sci 2000;41:3770-4.
Rubinstein NA, Hoh JF. The distribution of myosin heavy chain isoforms among rat extraocular muscle fiber types. Invest Opthalmol Vis Sci 2000 41:3391-8.
Rubinstein NA, Porter JD, Hoh JF. The development of longitudinal variation of myosin isoforms in the orbital fibers of extraocular muscles of rats. Invest Opthalmol Vis Sci 2004;45:3067-72. DOI: https://doi.org/10.1167/iovs.04-0106
Hoh JFY. Myosin heavy chains in extraocular muscle fibres: distribution, regulation and function. Acta Physiol (Oxf) 2021;231:e13535. DOI: https://doi.org/10.1111/apha.13535
Blumer R, Maurer-Gesek B, Gesslbauer B, et al. Palisade endings are a constant feature in the extraocular muscles of frontal-eyed, but not lateral-eyed, animals. Invest Opthalmol Vis Sci 2016;57:320-31. DOI: https://doi.org/10.1167/iovs.15-18716
Sambasivan R, Gayraud-Morel B, Dumas G, et al. Distinct regulatory cascades govern extraocular and pharyngeal arch muscle progenitor cell fates. Dev Cell 2009;16:810-21. DOI: https://doi.org/10.1016/j.devcel.2009.05.008
Benítez-Temiño B, Davis-López de Carrizosa MA, Morcuende S, et al. Functional diversity of neurotrophin actions on the oculomotor system. Int J Mol Sci 2016;17:2016. DOI: https://doi.org/10.3390/ijms17122016
Macintosh BR. Cellular and whole muscle studies of activity dependent potentiation. Adv Exp Med Biol. 2010;682:315-42. DOI: https://doi.org/10.1007/978-1-4419-6366-6_18
Levine RJ, Kensler RW, Yang Z, et al. Myosin light chain phosphorylation affects the structure of rabbit skeletal muscle thick filaments. Biophys J 1996;71:898-907. DOI: https://doi.org/10.1016/S0006-3495(96)79293-7
Metzger JM, Greaser ML, Moss RL. Variations in cross-bridge attachment rate and tension with phosphorylation of myosin in mammalian skinned skeletal muscle fibers. Implications for twitch potentiation in intact muscle. J Gen Physiol 1989;93:855-83. DOI: https://doi.org/10.1085/jgp.93.5.855
Robinett JC, Hanft LM, Geist J, et al. Regulation of myofilament force and loaded shortening by skeletal myosin binding protein-C. J Gen Physiol 2019;151:645-59. DOI: https://doi.org/10.1085/jgp.201812200
Cairns SP, Dulhunty AF. The effects of beta-adrenoceptor activation on contraction in isolated fast- and slow-twitch skeletal muscle fibres of the rat. Brit J Pharmacol 1993;110:1133-41. DOI: https://doi.org/10.1111/j.1476-5381.1993.tb13932.x
Hoh JFY. Mechanism of post-tetanic depression of slow muscle fibres. J Comp Physiol B 2024;194:41-5. DOI: https://doi.org/10.1007/s00360-024-01536-6

How to Cite

Hoh, J. F. Y. (2025). Research into the physiology of myosins - a personal odyssey. European Journal of Translational Myology. https://doi.org/10.4081/ejtm.2025.13688

Similar Articles

You may also start an advanced similarity search for this article.