Longitudinal analysis of lower limb muscle activity and ankle tendon biosignals using structural equation modeling
Accepted: 1 August 2024
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
We collected biosignals from 63 participants and extracted the features corresponding to each level of exerted muscle force. Data were classified into typical and atypical patterns. Data analysis was performed using the Linear Latent Curve Model (LCM) and the Conditional Linear LCM. The typical patterns demonstrated a high degree of fit. Factors, such as ankle circumference and muscle mass, influenced the model intercept. A larger ankle circumference indicated attenuation of signal transmission from the tendon to the skin surface, leading to lower biosignal values. These results indicate that biosignals from the tendons near the ankle can be captured using piezoelectric film sensors. There are studies that define biosignals originating from tendons as mechanotendography. It has been demonstrated that the relationship between biosignals originating from tendons and the exerted muscle force can be explained linearly. Insights from this study may facilitate individualized approaches in the fields of motion control and rehabilitation. Physiological studies to elucidate the mechanisms underlying biosignal generation are necessary.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.