Role of the ubiquitin-proteasome system in the sarcopenic-like phenotype induced by CCL5/RANTES

Submitted: 31 December 2023
Accepted: 1 February 2024
Published: 15 February 2024
Abstract Views: 2339
PDF: 422
HTML: 15
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Sarcopenia is characterized by reduced muscle strength and mass and a decline in muscle fiber diameter and amount of sarcomeric proteins. Sarcopenia involves the activation of the ubiquitin-proteasome system (UPS). MuRF-1 and atrogin-1 are E3 ubiquitin ligases belonging to UPS, leading to proteolysis mediated by the PSMB 5, 6, and 7 subunits of 20S proteasome. CCL5/RANTES induces a sarcopenic-like effect in muscle cells. The present work explored the impact of CCL5 on UPS components and the influence of UPS on its sarcopenic-like effect. We demonstrated that CCL5 increased MuRF-1 and atrogin-1 protein levels and mRNA levels of subunits PSMB 5, 6, and 7. We used the MG132 inhibitor to elucidate the role of the 20S proteasome in the CCL5-induced sarcopenic-like effect. This inhibitor prevented the decrease in troponin and MHC protein levels and partially prevented the reduction in the diameter of single-isolated FDB muscle fibers induced by CCL5. These findings indicate that CCL5 actively modulates the UPS. Moreover, our results show the direct participation of UPS in the sarcopenic-like phenotype induced by CCL5.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Mukund K, Subramaniam S. Skeletal muscle: A review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med. 2020;12(1):e1462. Epub 2019/08/14. PubMed PMID: 31407867; PubMed Central PMCID: PMCPMC6916202. DOI: https://doi.org/10.1002/wsbm.1462
Li Y, Li S, Wu H. Ubiquitination-Proteasome System (UPS) and Autophagy Two Main Protein Degradation Machineries in Response to Cell Stress. 2022;11(5):851. DOI: https://doi.org/10.3390/cells11050851
Kitajima Y, Yoshioka K, Suzuki N. The ubiquitin-proteasome system in regulation of the skeletal muscle homeostasis and atrophy: from basic science to disorders. J Physiol Sci. 2020;70(1):40. Epub 2020/09/18. PubMed PMID: 32938372; PubMed Central PMCID: PMCPMC10717345. DOI: https://doi.org/10.1186/s12576-020-00768-9
Sakai H, Zhou Y, Miyauchi Y, Suzuki Y, Ikeno Y, Kon R, Ikarashi N, Chiba Y, Hosoe T, Kamei J. Increased 20S Proteasome Expression and the Effect of Bortezomib during Cisplatin-Induced Muscle Atrophy. Biol Pharm Bull. 2022;45(7):910-918. PMID: 35786599. DOI: https://doi.org/10.1248/bpb.b22-00177
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M; Writing Group for the European Working Group on Sarcopenia in Older People 2 (EWGSOP2), and the Extended Group for EWGSOP2. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019 Jan 1;48(1):16-31. Erratum in: Age Ageing. 2019 Jul 1;48(4):601. PMID: 30312372; PMCID: PMC6322506. DOI: https://doi.org/10.1093/ageing/afy169
Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, Peng LN, Sugimoto K, Tanaka T, Won CW, Yamada M, Zhang T, Akishita M, Arai H. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020 Mar;21(3):300-307.e2. Epub 2020 Feb 4. PMID: 32033882. DOI: https://doi.org/10.1016/j.jamda.2019.12.012
Abrigo J, Campos F, Gonzalez F, Aguirre F, Gonzalez A, Huerta-Salgado C, Conejeros S, Simon F, Arrese M, Cabrera D, Elorza AA, Cabello-Verrugio C. Sarcopenia Induced by Chronic Liver Disease in Mice Requires the Expression of the Bile Acids Membrane Receptor TGR5. Int J Mol Sci. 2020 Oct 25;21(21):7922. PMID: 33113850; PMCID: PMC7662491. DOI: https://doi.org/10.3390/ijms21217922
Ishiuchi Y, Sato H, Komatsu N, Kawaguchi H, Matsuwaki T, Yamanouchi K, Nishihara M, Nedachi T. Identification of CCL5/RANTES as a novel contraction-reducible myokine in mouse skeletal muscle. Cytokine. 2018 Aug;108:17-23. Epub 2018 Mar 17. PMID: 29558694. DOI: https://doi.org/10.1016/j.cyto.2018.03.012
Zhou H, Liao X, Zeng Q, Zhang H, Song J, Hu W, Sun X, Ding Y, Wang D, Xiao Y, Deng T. Metabolic effects of CCL5 deficiency in lean and obese mice. Front Immunol. 2023 Jan 13;13:1059687. PMID: 36713454; PMCID: PMC9880418. DOI: https://doi.org/10.3389/fimmu.2022.1059687
Lin CS, Hsieh PS, Hwang LL, Lee YH, Tsai SH, Tu YC, Hung YW, Liu CC, Chuang YP, Liao MT, Chien S, Tsai MC. The CCL5/CCR5 Axis Promotes Vascular Smooth Muscle Cell Proliferation and Atherogenic Phenotype Switching. Cell Physiol Biochem. 2018;47(2):707-720. Epub 2018 May 22. PMID: 29794461. DOI: https://doi.org/10.1159/000490024
Walens A, DiMarco AV, Lupo R, Kroger BR, Damrauer JS, Alvarez JV. CCL5 promotes breast cancer recurrence through macrophage recruitment in residual tumors. Elife. 2019 Apr 16;8:e43653. PMID: 30990165; PMCID: PMC6478432. DOI: https://doi.org/10.7554/eLife.43653
Baumann CW, Liu HM, Thompson LV. Denervation-Induced Activation of the Ubiquitin-Proteasome System Reduces Skeletal Muscle Quantity Not Quality. PLoS One. 2016 Aug 11;11(8):e0160839. PMID: 27513942; PMCID: PMC4981385. DOI: https://doi.org/10.1371/journal.pone.0160839
Wu J, Ding P, Wu H, Yang P, Guo H, Tian Y, Meng L, Zhao Q. Sarcopenia: Molecular regulatory network for loss of muscle mass and function. Front Nutr. 2023 Feb 2;10:1037200. PMID: 36819699; PMCID: PMC9932270. DOI: https://doi.org/10.3389/fnut.2023.1037200
Qin Z, Wan JJ, Sun Y, Wang PY, Su DF, Lei H, Liu X. ORM Promotes Skeletal Muscle Glycogen Accumulation via CCR5-Activated AMPK Pathway in Mice. Front Pharmacol. 2016 Sep 13;7:302. PMID: 27679573; PMCID: PMC5020064. DOI: https://doi.org/10.3389/fphar.2016.00302
Li M, Sun X, Zhao J, Xia L, Li J, Xu M, Wang B, Guo H, Yu C, Gao Y, Wu H, Kong X, Xia Q. CCL5 deficiency promotes liver repair by improving inflammation resolution and liver regeneration through M2 macrophage polarization. Cell Mol Immunol. 2020 Jul;17(7):753-764. Epub 2019 Sep 3. PMID: 31481754; PMCID: PMC7331700. DOI: https://doi.org/10.1038/s41423-019-0279-0
Pradère JP, Hernandez C, Koppe C, Friedman RA, Luedde T, Schwabe RF. Negative regulation of NF-κB p65 activity by serine 536 phosphorylation. Sci Signal. 2016 Aug 23;9(442):ra85. PMID: 27555662; PMCID: PMC5327697. DOI: https://doi.org/10.1126/scisignal.aab2820
Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol. 2017 Jun;34:1-6. Epub 2017 Apr 10. PMID: 28407519. DOI: https://doi.org/10.1016/j.coph.2017.03.009

How to Cite

Conejeros-Lillo, S., Aguirre, F., Cabrera, D., Simon, F., Peñailillo, L., & Cabello-Verrugio, C. (2024). Role of the ubiquitin-proteasome system in the sarcopenic-like phenotype induced by CCL5/RANTES. European Journal of Translational Myology, 34(1). https://doi.org/10.4081/ejtm.2024.12249

Similar Articles

You may also start an advanced similarity search for this article.