Stress distribution pattern in all-on-four maxillary restorations supported by porous tantalum and solid titanium implants using three-dimensional finite element analysis

Submitted: 10 December 2023
Accepted: 24 December 2023
Published: 16 February 2024
Abstract Views: 2676
PDF: 312
HTML: 5
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Success/failure of dental implants depends on stress transfer and distribution at the bone-implant interface. This study aimed to assess the stress distribution pattern in all-on-four maxillary restorations supported by porous tantalum and solid titanium implants using three-dimensional (3D) finite element analysis (FEA). In this FEA, a geometric model of an edentulous maxilla, Zimmer screw-vent tantalum and solid titanium implants were modelled. Four models with the all-on-four concept were designed. The fifth model had 6 vertical implants (all-on-six). Two different implant types (porous tantalum and solid titanium) were modelled to yield a total of 10 models, and subjected to 200 N bilateral vertical load. Pattern of stress distribution and maximum von Mises stress values in cancellous and cortical bones around implants were analysed. In tantalum models, the effect of increasing the distal tilting of posterior implants was comparable to the effect of increasing the number of implants to 6 on von Mises stress values in cortical bone. However, in cancellous bone, the effect of increasing the tilting of posterior implants on stress was slightly greater than the effect of increasing the number of implants to 6. In solid titanium models, the effect of both of the abovementioned parameters was comparable on stress in cancellous bone; but in cortical bone, the effect of increasing the implant number was slightly greater on stress reduction. Despite similar pattern of stress distribution in bone around implants, higher maximum von Mises stress values around tantalum implants indicate higher stress transfer capacity of this type of implant to the adjacent bone, compared with solid titanium implants.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Asawa N, Bulbule N, Kakade D, Shah R. Angulated implants: an alternative to bone augmentation and sinus lift procedure: systematic review. J Clin Diagn Res. 2015 Mar;9(3):ZE10-3. Epub 2015 Mar 1. PMID: 25954718; PMCID: PMC4413168.
Esposito M, Hirsch JM, Lekholm U, Thomsen P. Biological factors contributing to failures of osseointegrated oral implants. (I). Success criteria and epidemiology. Eur J Oral Sci. 1998 Feb;106(1):527-51. PMID: 9527353. DOI: https://doi.org/10.1046/j.0909-8836..t01-2-.x
Cricchio G, Lundgren S. Donor site morbidity in two different approaches to anterior iliac crest bone harvesting. Clin Implant Dent Relat Res. 2003;5(3):161-9. PMID: 14575632. DOI: https://doi.org/10.1111/j.1708-8208.2003.tb00198.x
Nkenke E, Schultze-Mosgau S, Radespiel-Tröger M, Kloss F, Neukam FW. Morbidity of harvesting of chin grafts: a prospective study. Clin Oral Implants Res. 2001 Oct;12(5):495-502. PMID: 11564110.. DOI: https://doi.org/10.1034/j.1600-0501.2001.120510.x
Maló P, Rangert B, Dvärsäter L. Immediate function of Brånemark implants in the esthetic zone: a retrospective clinical study with 6 months to 4 years of follow-up. Clin Implant Dent Relat Res. 2000;2(3):138-46. PMID: 11359258.. DOI: https://doi.org/10.1111/j.1708-8208.2000.tb00004.x
Durkan R, Oyar P, Deste G. Maxillary and mandibular all-on-four implant designs: A review. Niger J Clin Pract. 2019 Aug;22(8):1033-1040. PMID: 31417044. DOI: https://doi.org/10.4103/njcp.njcp_273_18
Maló P, Rangert B, Nobre M. All-on-4 immediate-function concept with Brånemark System implants for completely edentulous maxillae: a 1-year retrospective clinical study. Clin Implant Dent Relat Res. 2005;7 Suppl 1:S88-94. PMID: 16137093. DOI: https://doi.org/10.1111/j.1708-8208.2005.tb00080.x
Takahashi T, Shimamura I, Sakurai K. Influence of number and inclination angle of implants on stress distribution in mandibular cortical bone with All-on-4 Concept. J Prosthodont Res. 2010 Oct;54(4):179-84. Epub 2010 May 10. PMID: 20452854. DOI: https://doi.org/10.1016/j.jpor.2010.04.004
Aparicio C, Perales P, Rangert B. Tilted implants as an alternative to maxillary sinus grafting: a clinical, radiologic, and periotest study. Clin Implant Dent Relat Res. 2001;3(1):39-49. PMID: 11441542. DOI: https://doi.org/10.1111/j.1708-8208.2001.tb00127.x
Krekmanov L, Kahn M, Rangert B, Lindström H. Tilting of posterior mandibular and maxillary implants for improved prosthesis support. Int J Oral Maxillofac Implants. 2000 May-Jun;15(3):405-14. PMID: 10874806.
Skalak R. Biomechanical considerations in osseointegrated prostheses. J Prosthet Dent. 1983 Jun;49(6):843-8. PMID: 6576140. DOI: https://doi.org/10.1016/0022-3913(83)90361-X
Krekmanov L. Placement of posterior mandibular and maxillary implants in patients with severe bone deficiency: a clinical report of procedure. Int J Oral Maxillofac Implants. 2000 Sep-Oct;15(5):722-30. PMID: 11055139.
Calandriello R, Tomatis M. Simplified treatment of the atrophic posterior maxilla via immediate/early function and tilted implants: A prospective 1-year clinical study. Clin Implant Dent Relat Res. 2005;7 Suppl 1:S1-12. PMID: 16137082. DOI: https://doi.org/10.1111/j.1708-8208.2005.tb00069.x
Mattsson T, Köndell PA, Gynther GW, Fredholm U, Bolin A. Implant treatment without bone grafting in severely resorbed edentulous maxillae. J Oral Maxillofac Surg. 1999 Mar;57(3):281-7. PMID: 10077198. DOI: https://doi.org/10.1016/S0278-2391(99)90673-0
Aparicio C. A retrospective clinical and radiographic evaluation of tilted implants used in the treatment of the severely resorbed edentulous maxilla. Appl Osseointegration Res 2002; 3:17-21.
Bevilacqua M, Tealdo T, Menini M, Pera F, Mossolov A, Drago C, Pera P. The influence of cantilever length and implant inclination on stress distribution in maxillary implant-supported fixed dentures. J Prosthet Dent. 2011 Jan;105(1):5-13. PMID: 21194582. DOI: https://doi.org/10.1016/S0022-3913(10)60182-5
Zampelis A, Rangert B, Heijl L. Tilting of splinted implants for improved prosthodontic support: a two-dimensional finite element analysis. J Prosthet Dent. 2007 Jun;97(6 Suppl):S35-43. Erratum in: J Prosthet Dent. 2008 Mar;99(3):167. PMID: 17618932. DOI: https://doi.org/10.1016/S0022-3913(07)60006-7
Cağlar A, Aydin C, Ozen J, Yilmaz C, Korkmaz T. Effects of mesiodistal inclination of implants on stress distribution in implant-supported fixed prostheses. Int J Oral Maxillofac Implants. 2006 Jan-Feb;21(1):36-44. PMID: 16519180.
Bahrami B, Shahrbaf S, Mirzakouchaki B, Ghalichi F, Ashtiani M, Martin N. Effect of surface treatment on stress distribution in immediately loaded dental implants--a 3D finite element analysis. Dent Mater. 2014 Apr;30(4):e89-97. Epub 2014 Feb 18. PMID: 24559526. DOI: https://doi.org/10.1016/j.dental.2014.01.012
Sahin S, Cehreli MC, Yalçin E. The influence of functional forces on the biomechanics of implant-supported prostheses--a review. J Dent. 2002 Sep-Nov;30(7-8):271-82. PMID: 12554107. DOI: https://doi.org/10.1016/S0300-5712(02)00065-9
Shimko DA, Shimko VF, Sander EA, Dickson KF, Nauman EA. Effect of porosity on the fluid flow characteristics and mechanical properties of tantalum scaffolds. J Biomed Mater Res B Appl Biomater. 2005 May;73(2):315-24. PMID: 15736288. DOI: https://doi.org/10.1002/jbm.b.30229
Meneghini RM, Ford KS, McCollough CH, Hanssen AD, Lewallen DG. Bone remodeling around porous metal cementless acetabular components. J Arthroplasty. 2010 Aug;25(5):741-7. Epub 2009 May 26. PMID: 19473807. DOI: https://doi.org/10.1016/j.arth.2009.04.025
Bencharit S, Byrd WC, Altarawneh S, Hosseini B, Leong A, Reside G, Morelli T, Offenbacher S. Development and applications of porous tantalum trabecular metal-enhanced titanium dental implants. Clin Implant Dent Relat Res. 2014 Dec;16(6):817-26. Epub 2013 Mar 25. PMID: 23527899; PMCID: PMC3708989. DOI: https://doi.org/10.1111/cid.12059
Chen LJ. Finite Element Analysis of the Stress on the Implant-Bone Interface of Dental Implants with Different Structures. Finite Element Analysis – New Trends and Developments. 2012; Chapter 3:55-72. DOI: https://doi.org/10.5772/50699
Liu Y, Bao C, Wismeijer D, Wu G. The physicochemical/biological properties of porous tantalum and the potential surface modification techniques to improve its clinical application in dental implantology. Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:323-329. Epub 2015 Jan 6. PMID: 25686956. DOI: https://doi.org/10.1016/j.msec.2015.01.007
Vaillancourt H, Pilliar RM, McCammond D. Factors affecting crestal bone loss with dental implants partially covered with a porous coating: a finite element analysis. Int J Oral Maxillofac Implants. 1996 May-Jun;11(3):351-9. PMID: 8752556.
Pilliar RM, Deporter DA, Watson PA, Valiquette N. Dental implant design--effect on bone remodeling. J Biomed Mater Res. 1991 Apr;25(4):467-83. PMID: 2050711. DOI: https://doi.org/10.1002/jbm.820250405
Unger AS, Lewis RJ, Gruen T. Evaluation of a porous tantalum uncemented acetabular cup in revision total hip arthroplasty: clinical and radiological results of 60 hips. J Arthroplasty. 2005 Dec;20(8):1002-9. PMID: 16376255. DOI: https://doi.org/10.1016/j.arth.2005.01.023
Wigfield C, Robertson J, Gill S, Nelson R. Clinical experience with porous tantalum cervical interbody implants in a prospective randomized controlled trial. Br J Neurosurg. 2003 Oct;17(5):418-25. PMID: 14635746. DOI: https://doi.org/10.1080/02688690310001611206
Tsao AK, Roberson JR, Christie MJ, Dore DD, Heck DA, Robertson DD, Poggie RA. Biomechanical and clinical evaluations of a porous tantalum implant for the treatment of early-stage osteonecrosis. J Bone Joint Surg Am. 2005;87 Suppl 2:22-7. PMID: 16326720. DOI: https://doi.org/10.2106/JBJS.E.00490
Romanos GE, Delgado-Ruiz RA, Sacks D, Calvo-Guirado JL. Influence of the implant diameter and bone quality on the primary stability of porous tantalum trabecular metal dental implants: an in vitro biomechanical study. Clin Oral Implants Res. 2018 Jun;29(6):649-655. Epub 2016 Feb 24. PMID: 26916451. DOI: https://doi.org/10.1111/clr.12792
Kim DG, Huja SS, Tee BC, Larsen PE, Kennedy KS, Chien HH, Lee JW, Wen HB. Bone ingrowth and initial stability of titanium and porous tantalum dental implants: a pilot canine study. Implant Dent. 2013 Aug;22(4):399-405. PMID: 23823737. DOI: https://doi.org/10.1097/ID.0b013e31829b17b5
Sato Y, Wadamoto M, Tsuga K, Teixeira ER. The effectiveness of element downsizing on a three-dimensional finite element model of bone trabeculae in implant biomechanics. J Oral Rehabil. 1999 Apr;26(4):288-91. PMID: 10232856. DOI: https://doi.org/10.1046/j.1365-2842.1999.00390.x
Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent. 2001 Jun;85(6):585-98. PMID: 11404759. DOI: https://doi.org/10.1067/mpr.2001.115251
Sannino G. All-on-4 concept: a 3-dimensional finite element analysis. J Oral Implantol. 2015 Apr;41(2):163-71. Epub 2013 Apr 5. PMID: 23560570. DOI: https://doi.org/10.1563/AAID-JOI-D-12-00312
Akbarzadeh A, Hemmati Y, Saleh-Saber F. Evaluation of stress distribution of porous tantalum and solid titanium implant-assisted overdenture in the mandible: A finite element study. Dent Res J (Isfahan). 2021 Dec 10;18:108. PMID: 35265291; PMCID: PMC8804542. DOI: https://doi.org/10.4103/1735-3327.332102
Saleh Saber F, Ghasemi S, Koodaryan R, Babaloo A, Abolfazli N. The Comparison of Stress Distribution with Different Implant Numbers and Inclination Angles In All-on-four and Conventional Methods in Maxilla: A Finite Element Analysis. J Dent Res Dent Clin Dent Prospects. 2015 Fall;9(4):246-53. Epub 2015 Dec 30. PMID: 26889362; PMCID: PMC4753034. DOI: https://doi.org/10.15171/joddd.2015.044
Zarb GA, editor. Osseointegration: on continuing synergies in surgery, prosthodontics, biomaterials. Quintessence Publishing Company; 2008. p. 23-5.
Kumari A, Malhotra P, Phogat S, Yadav B, Yadav J, Phukela SS. A finite element analysis to study the stress distribution on distal implants in an all-on-four situation in atrophic maxilla as affected by the tilt of the implants and varying cantilever lengths. J Indian Prosthodont Soc. 2020 Oct-Dec;20(4):409-416. Epub 2020 Oct 8. PMID: 33487969; PMCID: PMC7814689. DOI: https://doi.org/10.4103/jips.jips_70_20
Sevimay M, Turhan F, Kiliçarslan MA, Eskitascioglu G. Three-dimensional finite element analysis of the effect of different bone quality on stress distribution in an implant-supported crown. J Prosthet Dent. 2005 Mar;93(3):227-34. PMID: 15775923. DOI: https://doi.org/10.1016/j.prosdent.2004.12.019
Horita S, Sugiura T, Yamamoto K, Murakami K, Imai Y, Kirita T. Biomechanical analysis of immediately loaded implants according to the "All-on-Four" concept. J Prosthodont Res 2017; 61:123-32. DOI: https://doi.org/10.1016/j.jpor.2016.08.002
Kelkar KC, Bhat V, Hegde C. Finite element analysis of the effect of framework materials at the bone-implant interface in the all-on-four implant system. Dent Res J (Isfahan). 2021 Feb 23;18:1. PMID: 34084288; PMCID: PMC8122683. DOI: https://doi.org/10.4103/1735-3327.310031
Bellini CM, Romeo D, Galbusera F, Agliardi E, Pietrabissa R, Zampelis A, Francetti L. A finite element analysis of tilted versus nontilted implant configurations in the edentulous maxilla. Int J Prosthodont. 2009 Mar-Apr;22(2):155-7. PMID: 19418861.
Bhering CL, Mesquita MF, Kemmoku DT, Noritomi PY, Consani RL, Barão VA. Comparison between all-on-four and all-on-six treatment concepts and framework material on stress distribution in atrophic maxilla: A prototyping guided 3D-FEA study. Mater Sci Eng C Mater Biol Appl. 2016 Dec 1;69:715-25. Epub 2016 Jul 21. PMID: 27612765. DOI: https://doi.org/10.1016/j.msec.2016.07.059
van Zyl PP, Grundling NL, Jooste CH, Terblanche E. Three-dimensional finite element model of a human mandible incorporating six osseointegrated implants for stress analysis of mandibular cantilever prostheses. Int J Oral Maxillofac Implants. 1995 Jan-Feb;10(1):51-7. PMID: 7615317.
Sertgöz A. Finite element analysis study of the effect of superstructure material on stress distribution in an implant-supported fixed prosthesis. Int J Prosthodont. 1997 Jan-Feb;10(1):19-27. PMID: 9484066.
Lewis MB, Klineberg I. Prosthodontic considerations designed to optimize outcomes for single-tooth implants. A review of the literature. Aust Dent J. 2011 Jun;56(2):181-92. PMID: 21623811. DOI: https://doi.org/10.1111/j.1834-7819.2011.01322.x
Baggi L, Pastore S, Di Girolamo M, Vairo G. Implant-bone load transfer mechanisms in complete-arch prostheses supported by four implants: a three-dimensional finite element approach. J Prosthet Dent. 2013 Jan;109(1):9-21. PMID: 23328192. DOI: https://doi.org/10.1016/S0022-3913(13)60004-9

How to Cite

Masoomi, F., & Mahboub, F. (2024). Stress distribution pattern in all-on-four maxillary restorations supported by porous tantalum and solid titanium implants using three-dimensional finite element analysis. European Journal of Translational Myology, 34(1). https://doi.org/10.4081/ejtm.2024.12170