Aerobic training and vitamin E administration ameliorates cardiac apoptosis markers in rats exposed to methamphetamine

Published: 11 December 2023
Abstract Views: 760
PDF: 377
HTML: 6
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Methamphetamine (MA) abuse is related to risks to the cardiovascular system. The present study aimed to compare the effects of moderate-intensity aerobic training (MIAT) and vitamin E (Vit.E) supplementation on markers of cardiac apoptosis following MA exposure. Fifty-four rats were randomly divided into six groups. CON group did not receive MA, while the others received MA alone or in combination with MIAT, Vit. E, MIAT+Vit E, or paraffin (PAR). These groups received MA incrementally for 23 consecutive days. Vit.E and MIAT+Vit.E groups received vitamin E three times a week for six weeks. MIAT and MIAT+Vit.E groups exercised for 25–40 min. Immunohistochemical and gene expression analyses were performed on the heart tissues. Bax and TGF-β expression was significantly higher, while Bcl-2 and VEGF expression was significantly lower in the MA and PAR groups than in the other groups (p < 0.05). Bcl-2 and VEGF expression was higher, and Bax and TGF-β expression was significantly lower in the MIAT and MIAT+Vit.E groups than in the other groups (p < 0.05). In Vit.E treated groups, Bax and TGF-β expression were lower, and VEGF was higher than that in the MA and PAR groups, but higher than those in the CON, MIAT and MIAT+Vit.E groups. MA increased the expression of Bax and TGF-β, and decreased the expression of Bcl-2 and VEGF, suggesting increased cardiac apoptosis. In contrast, MIAT and Vit.E decreased the expression of Bax and TGF-β, suggesting a reduction in cardiac apoptosis induced by MA.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Sun X, Wang Y, Xia B, Li Z, Dai J, Qiu P, Ma A, Lin Z, Huang J, Wang J, Xie WB, Wang J. Methamphetamine produces cardiac damage and apoptosis by decreasing melusin. Toxicol Appl Pharmacol. 2019 Sep 1;378:114543. Epub 2019 Mar 20. PMID: 30904475. DOI: https://doi.org/10.1016/j.taap.2019.03.015
Reddy PKV, Ng TMH, Oh EE, Moady G, Elkayam U. Clinical Characteristics and Management of Methamphetamine-Associated Cardiomyopathy: State-of-the-Art Review. J Am Heart Assoc. 2020 Jun 2;9(11):e016704. Epub 2020 May 29. PMID: 32468897; PMCID: PMC7428977. DOI: https://doi.org/10.1161/JAHA.120.016704
He S, Yao Y, Yang N, Wang Y, Liu D, Cao Z, Chen H, Fu Y, Yang M, Wang S, He G, Zhao Q. Dapagliflozin Protects Methamphetamine-Induced Cardiomyopathy by Alleviating Mitochondrial Damage and Reducing Cardiac Function Decline in a Mouse Model. Front Pharmacol. 2022 Jul 7;13:925276. PMID: 35873593; PMCID: PMC9301370. DOI: https://doi.org/10.3389/fphar.2022.925276
Liou CM, Tsai SC, Kuo CH, Williams T, Ting H, Lee SD. Chronic methamphetamine exposure induces cardiac fas-dependent and mitochondria-dependent apoptosis. Cardiovasc Toxicol. 2014 Jun;14(2):134-44. PMID: 24307234. DOI: https://doi.org/10.1007/s12012-013-9237-8
Cai D, Huang E, Luo B, Yang Y, Zhang F, Liu C, Lin Z, Xie WB, Wang H. Nupr1/Chop signal axis is involved in mitochondrion-related endothelial cell apoptosis induced by methamphetamine. Cell Death Dis. 2016 Mar 31;7(3):e2161. PMID: 27031958; PMCID: PMC4823965. DOI: https://doi.org/10.1038/cddis.2016.67
Spender LC, O'Brien DI, Simpson D, Dutt D, Gregory CD, Allday MJ, Clark LJ, Inman GJ. TGF-beta induces apoptosis in human B cells by transcriptional regulation of BIK and BCL-XL. Cell Death Differ. 2009 Apr;16(4):593-602. Epub 2009 Jan 9. PMID: 19136942; PMCID: PMC2857326. DOI: https://doi.org/10.1038/cdd.2008.183
Dias S, Choy M, Alitalo K, Rafii S. Vascular endothelial growth factor (VEGF)-C signaling through FLT-4 (VEGFR-3) mediates leukemic cell proliferation, survival, and resistance to chemotherapy. Blood. 2002 Mar 15;99(6):2179-84. PMID: 11877295. DOI: https://doi.org/10.1182/blood.V99.6.2179
Tang JY, Li S, Li ZH, Zhang ZJ, Hu G, Cheang LC, Alex D, Hoi MP, Kwan YW, Chan SW, Leung GP, Lee SM. Calycosin promotes angiogenesis involving estrogen receptor and mitogen-activated protein kinase (MAPK) signaling pathway in zebrafish and HUVEC. PLoS One. 2010 Jul 29;5(7):e11822. PMID: 20686605; PMCID: PMC2912279. DOI: https://doi.org/10.1371/journal.pone.0011822
Dias S, Shmelkov SV, Lam G, Rafii S. VEGF(165) promotes survival of leukemic cells by Hsp90-mediated induction of Bcl-2 expression and apoptosis inhibition. Blood. 2002 Apr 1;99(7):2532-40. PMID: 11895790. DOI: https://doi.org/10.1182/blood.V99.7.2532
Ghadiri A, Etemad L, Moshiri M, Moallem SA, Jafarian AH, Hadizadeh F, Seifi M. Exploring the effect of intravenous lipid emulsion in acute methamphetamine toxicity. Iran J Basic Med Sci. 2017 Feb;20(2):138-144. PMID: 28293389; PMCID: PMC5339653.
Morais APD, Pita IR, Fontes-Ribeiro CA, Pereira FC. The neurobiological mechanisms of physical exercise in methamphetamine addiction. CNS Neurosci Ther. 2018 Feb;24(2):85-97. Epub 2017 Dec 20. PMID: 29266758; PMCID: PMC6489779. DOI: https://doi.org/10.1111/cns.12788
Carvalho MR, Mendonça MLM, Oliveira JML, Romanenghi RB, Morais CS, Ota GE, Lima ARR, Oliveira RJ, Filiú WFO, Okoshi K, Okoshi MP, Oliveira-Junior SA, Martinez PF. Influence of high-intensity interval training and intermittent fasting on myocardium apoptosis pathway and cardiac morphology of healthy rats. Life Sci. 2021 Jan 1;264:118697. Epub 2020 Oct 30. PMID: 33130084. DOI: https://doi.org/10.1016/j.lfs.2020.118697
Lu K, Wang L, Wang C, Yang Y, Hu D, Ding R. Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model. Mol Med Rep. 2015 Aug;12(2):2374-82. Epub 2015 Apr 23. PMID: 25936391. DOI: https://doi.org/10.3892/mmr.2015.3669
Shahrabadi H, Haghighi AH, Askari R, Asadi-Shekaari M, Souza DC, Gentil P. Effect of High-Intensity Interval Training on Cardiac Apoptosis Markers in Methamphetamine-Dependent Rats. Curr Issues Mol Biol. 2022 Jul 4;44(7):3030-3038. PMID: 35877433; PMCID: PMC9315973. DOI: https://doi.org/10.3390/cimb44070209
Viana RB, de Lira CAB, Naves JPA, Coswig VS, Del Vecchio FB, Ramirez-Campillo R, Vieira CA, Gentil P. Can We Draw General Conclusions from Interval Training Studies? Sports Med. 2018 Sep;48(9):2001-2009. PMID: 29675669. DOI: https://doi.org/10.1007/s40279-018-0925-1
Silva LRB, Gentil P, Seguro CS, de Oliveira JCM, Silva MS, Marques VA, Beltrame T, Rebelo ACS. High-Intensity Interval Training Improves Cardiac Autonomic Function in Patients with Type 2 Diabetes: A Randomized Controlled Trial. Biology (Basel). 2022 Jan 2;11(1):66. PMID: 35053064; PMCID: PMC8773290. DOI: https://doi.org/10.3390/biology11010066
Naves JPA, Rebelo ACS, Silva LRBE, Silva MS, Ramirez-Campillo R, Ramírez-Vélez R, Gentil P. Cardiorespiratory and perceptual responses of two interval training and a continuous training protocol in healthy young men. Eur J Sport Sci. 2019 Jun;19(5):653-660. Epub 2018 Nov 29. PMID: 30496024. DOI: https://doi.org/10.1080/17461391.2018.1548650
Kelly P, Kahlmeier S, Götschi T, Orsini N, Richards J, Roberts N, Scarborough P, Foster C. Systematic review and meta-analysis of reduction in all-cause mortality from walking and cycling and shape of dose response relationship. Int J Behav Nutr Phys Act. 2014 Oct 24;11:132. PMID: 25344355; PMCID: PMC4262114. DOI: https://doi.org/10.1186/s12966-014-0132-x
Murtagh EM, Murphy MH, Boone-Heinonen J. Walking: the first steps in cardiovascular disease prevention. Curr Opin Cardiol. 2010 Sep;25(5):490-6. PMID: 20625280; PMCID: PMC3098122. DOI: https://doi.org/10.1097/HCO.0b013e32833ce972
Morris JN, Hardman AE. Walking to health. Sports Med. 1997 May;23(5):306-32. Erratum in: Sports Med 1997 Aug;24(2):96. PMID: 9181668. DOI: https://doi.org/10.2165/00007256-199723050-00004
Simonton AJ, Young CC, Brown RA. Physical Activity Preferences and Attitudes of Individuals With Substance Use Disorders: A Review of the Literature. Issues Ment Health Nurs. 2018 Aug;39(8):657-666. Epub 2018 Mar 5. PMID: 29505733. DOI: https://doi.org/10.1080/01612840.2018.1429510
Virmani A, Gaetani F, Binienda Z. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine. Ann N Y Acad Sci. 2005 Aug;1053:183-91. PMID: 16179522. DOI: https://doi.org/10.1111/j.1749-6632.2005.tb00024.x
Zeng Q, Xiong Q, Zhou M, Tian X, Yue K, Li Y, Shu X, Ru Q. Resveratrol attenuates methamphetamine-induced memory impairment via inhibition of oxidative stress and apoptosis in mice. J Food Biochem. 2021 Feb;45(2):e13622. Epub 2021 Jan 27. PMID: 33502009. DOI: https://doi.org/10.1111/jfbc.13622
Hellem TL, Lundberg KJ, Renshaw PF. A review of treatment options for co-occurring methamphetamine use disorders and depression. J Addict Nurs. 2015 Jan-Mar;26(1):14-23; quiz E1. PMID: 25761159; PMCID: PMC5510330. DOI: https://doi.org/10.1097/JAN.0000000000000058
Hellem TL, Sung YH, Shi XF, Pett MA, Latendresse G, Morgan J, Huber RS, Kuykendall D, Lundberg KJ, Renshaw PF. Creatine as a Novel Treatment for Depression in Females Using Methamphetamine: A Pilot Study. J Dual Diagn. 2015;11(3-4):189-202. PMID: 26457568; PMCID: PMC4684979. DOI: https://doi.org/10.1080/15504263.2015.1100471
Ru Q, Xiong Q, Tian X, Chen L, Zhou M, Li Y, Li C. Tea Polyphenols Attenuate Methamphetamine-Induced Neuronal Damage in PC12 Cells by Alleviating Oxidative Stress and Promoting DNA Repair. Front Physiol. 2019 Dec 5;10:1450. PMID: 31920684; PMCID: PMC6915097. DOI: https://doi.org/10.3389/fphys.2019.01450
Ghafori SS, Javanmard MZ, Meghrazi K, Karimipour M, Peirouvi T. Protective Effects of Vitamin E on Heart and Testis Histology Following MDMA (Ecstasy) Exposure in Mice. International Journal of High Risk Behaviors and Addiction 2019 8:4. 2019 Dec 31;8(4):84212. DOI: https://doi.org/10.5812/ijhrba.84212
Groman SM, Rich KM, Smith NJ, Lee D, Taylor JR. Chronic Exposure to Methamphetamine Disrupts Reinforcement-Based Decision Making in Rats. Neuropsychopharmacology. 2018 Mar;43(4):770-780. Epub 2017 Jul 25. PMID: 28741627; PMCID: PMC5809784. DOI: https://doi.org/10.1038/npp.2017.159
Høydal MA, Wisløff U, Kemi OJ, Ellingsen O. Running speed and maximal oxygen uptake in rats and mice: practical implications for exercise training. Eur J Cardiovasc Prev Rehabil. 2007 Dec;14(6):753-60. PMID: 18043295. DOI: https://doi.org/10.1097/HJR.0b013e3281eacef1
Abbasian S, Ravasi AA, Haghighi AH, Aydin S, Delbari A, Aydın S. Preconditioning intensive training ameliorates reduction of transcription biofactors of PGC1α-pathway in paretic muscle due to cerebral ischemia. Biotech Histochem. 2023 Jan;98(1):46-53. Epub 2022 Jul 27. PMID: 35892280. DOI: https://doi.org/10.1080/10520295.2022.2098535
Di Napoli P, Taccardi AA, Grilli A, Felaco M, Balbone A, Angelucci D, Gallina S, Calafiore AM, De Caterina R, Barsotti A. Left ventricular wall stress as a direct correlate of cardiomyocyte apoptosis in patients with severe dilated cardiomyopathy. Am Heart J. 2003 Dec;146(6):1105-11. PMID: 14661007. DOI: https://doi.org/10.1016/S0002-8703(03)00445-9
Gustafsson AB, Gottlieb RA. Bcl-2 family members and apoptosis, taken to heart. Am J Physiol Cell Physiol. 2007 Jan;292(1):C45-51. Epub 2006 Aug 30. PMID: 16943242. DOI: https://doi.org/10.1152/ajpcell.00229.2006
Mattson MP, Chan SL, Duan W. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002 Jul;82(3):637-72. PMID: 12087131. DOI: https://doi.org/10.1152/physrev.00004.2002
Mattson MP, Duan W, Chan SL, Cheng A, Haughey N, Gary DS, Guo Z, Lee J, Furukawa K. Neuroprotective and neurorestorative signal transduction mechanisms in brain aging: modification by genes, diet and behavior. Neurobiol Aging. 2002 Sep-Oct;23(5):695-705. PMID: 12392775. DOI: https://doi.org/10.1016/S0197-4580(02)00025-8
Bhavnani BR. Estrogens and menopause: pharmacology of conjugated equine estrogens and their potential role in the prevention of neurodegenerative diseases such as Alzheimer's. J Steroid Biochem Mol Biol. 2003 Jun;85(2-5):473-82. PMID: 12943738. DOI: https://doi.org/10.1016/S0960-0760(03)00220-6
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol. 2012 Oct;167(4):699-719. PMID: 23003569; PMCID: PMC3575772. DOI: https://doi.org/10.1111/j.1476-5381.2012.02025.x
Kanda T, Matsuoka S, Yamazaki M, Shibata T, Nirei K, Takahashi H, Kaneko T, Fujisawa M, Higuchi T, Nakamura H, Matsumoto N, Yamagami H, Ogawa M, Imazu H, Kuroda K, Moriyama M. Apoptosis and non-alcoholic fatty liver diseases. World J Gastroenterol. 2018 Jul 7;24(25):2661-2672. PMID: 29991872; PMCID: PMC6034146. DOI: https://doi.org/10.3748/wjg.v24.i25.2661
Yu JD, Miyamoto S. Molecular Signaling to Preserve Mitochondrial Integrity against Ischemic Stress in the Heart: Rescue or Remove Mitochondria in Danger. Cells. 2021 Nov 27;10(12):3330. PMID: 34943839; PMCID: PMC8699551. DOI: https://doi.org/10.3390/cells10123330
Kirshenbaum LA, de Moissac D. The bcl-2 gene product prevents programmed cell death of ventricular myocytes. Circulation. 1997 Sep 2;96(5):1580-5. PMID: 9315550. DOI: https://doi.org/10.1161/01.CIR.96.5.1580
Capano M, Crompton M. Bax translocates to mitochondria of heart cells during simulated ischaemia: involvement of AMP-activated and p38 mitogen-activated protein kinases. Biochem J. 2006 Apr 1;395(1):57-64. PMID: 16321138; PMCID: PMC1409704. DOI: https://doi.org/10.1042/BJ20051654
Gustafsson AB, Tsai JG, Logue SE, Crow MT, Gottlieb RA. Apoptosis repressor with caspase recruitment domain protects against cell death by interfering with Bax activation. J Biol Chem. 2004 May 14;279(20):21233-8. Epub 2004 Mar 5. PMID: 15004034. DOI: https://doi.org/10.1074/jbc.M400695200
Shafiei A, Haghighi AH, Askari R, Keyhani A, Nabavizadeh MS, Asadi-Shekaari M. Effects of Moderate-Intensity Interval Training on Gene Expression and Antioxidant Status in the Hippocampus of Methamphetamine-Dependent Rats. Neurotox Res. 2022 Oct;40(5):1455-1463. Epub 2022 Jul 4. PMID: 35781220. DOI: https://doi.org/10.1007/s12640-022-00532-4
Ni C, Ji Y, Hu K, Xing K, Xu Y, Gao Y. Effect of exercise and antioxidant supplementation on cellular lipid peroxidation in elderly individuals: Systematic review and network meta-analysis. Front Physiol. 2023 Feb 14;14:1113270. PMID: 36866175; PMCID: PMC9971974. DOI: https://doi.org/10.3389/fphys.2023.1113270
Supruniuk E, Górski J, Chabowski A. Endogenous and Exogenous Antioxidants in Skeletal Muscle Fatigue Development during Exercise. Antioxidants (Basel). 2023 Feb 16;12(2):501. PMID: 36830059; PMCID: PMC9952836. DOI: https://doi.org/10.3390/antiox12020501
Powers SK, Goldstein E, Schrager M, Ji LL. Exercise Training and Skeletal Muscle Antioxidant Enzymes: An Update. Antioxidants (Basel). 2022 Dec 25;12(1):39. PMID: 36670901; PMCID: PMC9854578. DOI: https://doi.org/10.3390/antiox12010039
Meulmeester FL, Luo J, Martens LG, Mills K, van Heemst D, Noordam R. Antioxidant Supplementation in Oxidative Stress-Related Diseases: What Have We Learned from Studies on Alpha-Tocopherol? Antioxidants (Basel). 2022 Nov 24;11(12):2322. PMID: 36552530; PMCID: PMC9774512. DOI: https://doi.org/10.3390/antiox11122322
Didier AJ, Stiene J, Fang L, Watkins D, Dworkin LD, Creeden JF. Antioxidant and Anti-Tumor Effects of Dietary Vitamins A, C, and E. Antioxidants (Basel). 2023 Mar 3;12(3):632. PMID: 36978880; PMCID: PMC10045152. DOI: https://doi.org/10.3390/antiox12030632
Sedaghat M. Cardiac remodeling, apoptosis-related process (Bax, Bcl-2), and their ratio (Bax/Bcl-2) in cardiomyocytes of diabetic rats after combined exercise training and taurine supplementation. Comp Clin Path. 2021 Oct 1; 30(5):801–10. DOI: https://doi.org/10.1007/s00580-021-03275-4
Ma Y, Kuang Y, Bo W, Liang Q, Zhu W, Cai M, Tian Z. Exercise Training Alleviates Cardiac Fibrosis through Increasing Fibroblast Growth Factor 21 and Regulating TGF-β1-Smad2/3-MMP2/9 Signaling in Mice with Myocardial Infarction. Int J Mol Sci. 2021 Nov 15;22(22):12341. PMID: 34830222; PMCID: PMC8623999. DOI: https://doi.org/10.3390/ijms222212341
Ayari S, Abellard A, Carayol M, Guedj É, Gavarry O. A systematic review of exercise modalities that reduce pro-inflammatory cytokines in humans and animals' models with mild cognitive impairment or dementia. Exp Gerontol. 2023 May;175:112141. Epub 2023 Mar 14. PMID: 36898593. DOI: https://doi.org/10.1016/j.exger.2023.112141
Nair B, Nath LR. Inevitable role of TGF-β1 in progression of nonalcoholic fatty liver disease. J Recept Signal Transduct Res. 2020 Jun;40(3):195-200. Epub 2020 Feb 13. PMID: 32054379. DOI: https://doi.org/10.1080/10799893.2020.1726952
Jarmakiewicz-Czaja S, Sokal A, Ferenc K, Motyka E, Helma K, Filip R. The Role of Genetic and Epigenetic Regulation in Intestinal Fibrosis in Inflammatory Bowel Disease: A Descending Process or a Programmed Consequence? Genes (Basel). 2023 May 27;14(6):1167. PMID: 37372347; PMCID: PMC10297896. DOI: https://doi.org/10.3390/genes14061167
He C, Ye P, Zhang X, Esmaeili E, Li Y, Lü P, Cai C. The Role of TGF-β Signaling in Saphenous Vein Graft Failure after Peripheral Arterial Disease Bypass Surgery. Int J Mol Sci. 2023 Jun 20;24(12):10381. PMID: 37373529; PMCID: PMC10299557. DOI: https://doi.org/10.3390/ijms241210381
Shimonty A, Bonewald LF, Pin F. Role of the Osteocyte in Musculoskeletal Disease. Curr Osteoporos Rep. 2023 Jun;21(3):303-310. Epub 2023 Apr 21. PMID: 37084017. DOI: https://doi.org/10.1007/s11914-023-00788-5
Esmaeilzadeh A, Mohammadi V, Elahi R. Transforming growth factor β (TGF-β) pathway in the immunopathogenesis of multiple sclerosis (MS); molecular approaches. Mol Biol Rep. 2023 Jul;50(7):6121-6131. Epub 2023 May 19. PMID: 37204543. DOI: https://doi.org/10.1007/s11033-023-08419-z
Chan MK, Chan EL, Ji ZZ, Chan AS, Li C, Leung KT, To KF, Tang PM. Transforming growth factor-β signaling: from tumor microenvironment to anticancer therapy. Explor Target Antitumor Ther. 2023;4(2):316-343. Epub 2023 Apr 28. PMID: 37205317; PMCID: PMC10185444. DOI: https://doi.org/10.37349/etat.2023.00137
Mitsiou G, Tokmakidis SP, Dinas PC, Smilios I, Nanas S. Endothelial progenitor cell mobilization based on exercise volume in patients with cardiovascular disease and healthy individuals: a systematic review and meta-analysis. Eur Heart J Open. 2022 Dec 21;2(6):oeac078. PMID: 36583078; PMCID: PMC9793853. DOI: https://doi.org/10.1093/ehjopen/oeac078
Tonini T, Rossi F, Claudio PP. Molecular basis of angiogenesis and cancer. Oncogene. 2003 Sep 29;22(42):6549-56. PMID: 14528279. DOI: https://doi.org/10.1038/sj.onc.1206816
Ma Y, Liu H, Wang Y, Xuan J, Gao X, Ding H, Ma C, Chen Y, Yang Y. Roles of physical exercise-induced MiR-126 in cardiovascular health of type 2 diabetes. Diabetol Metab Syndr. 2022 Nov 14;14(1):169. PMID: 36376958; PMCID: PMC9661802. DOI: https://doi.org/10.1186/s13098-022-00942-6
Limaye NS, Carvalho LB, Kramer S. Effects of Aerobic Exercise on Serum Biomarkers of Neuroplasticity and Brain Repair in Stroke: A Systematic Review. Arch Phys Med Rehabil. 2021 Aug;102(8):1633-1644. Epub 2021 May 14. PMID: 33992633. DOI: https://doi.org/10.1016/j.apmr.2021.04.010
Ben-Zeev T, Shoenfeld Y, Hoffman JR. The Effect of Exercise on Neurogenesis in the Brain. The Israel Medicine Association Journal. 2022;24(8):533–8.
Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K, Kumar S, Raje N, Richardson PG, Harousseau JL, Anderson KC. VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood. 2004 Nov 1;104(9):2886-92. Epub 2004 Jun 24. PMID: 15217829. DOI: https://doi.org/10.1182/blood-2004-05-1760

How to Cite

Salimi, H., Haghighi, A. H., Ababzadeh, S., Marefati, H., Abbasian, S., Pond, A. L., & Gentil, P. (2023). Aerobic training and vitamin E administration ameliorates cardiac apoptosis markers in rats exposed to methamphetamine. European Journal of Translational Myology, 33(4). https://doi.org/10.4081/ejtm.2023.12112