Better isolation, proliferation and differentiation of human adipose-derived mesenchymal stem cells using human serum

Submitted: 3 September 2022
Accepted: 30 November 2022
Published: 27 January 2023
Abstract Views: 1289
PDF: 736
HTML: 30
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Mesenchymal stem cells have many applications in medicine. Attention to the proliferation and differentiation of stem cell differentiation is an important issue. The aim of this study was to investigate the possibility of optimal isolation, proliferation, and differentiation of adipose tissue-derived mesenchymal stem cells (ADSCs) using human serum. Human serum (HS) was obtained from the venous blood of eight healthy individuals. The rate of proliferation and differentiation of ADSCs and expression of surface markers was assessed by flow cytometry. Bone differentiation was assessed using Alizarin Red staining. Data were analyzed using statistical software. Over time, HS showed more proliferation than fetal bovine serum (FBS) -enriched cells (p <0.05). Differentiation of ADSCs cells ls in HS-enriched medium is faster and more pronounced than differentiation in the control group. The expression of surface markers in the medium containing HS was the same as the medium containing FBS where the expression levels of CD105 and CD95 were found to be positive and the expression of CD34 and CD45 was negative. Due to the better proliferation of adipose tissue-derived mesenchymal cells in the medium containing HS than FBS, it is suggested that human serum be used in future clinical studies. Also, HS is healthier, safer, more accessible, and more affordable than FBS.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Ebrahimi N, Adelian S, Shakerian S, Afshinpour M, Chaleshtori SR, Rostami N, Rezaei-Tazangi F, Beiranvand S, Hamblin MR, Aref AR. Crosstalk between ferroptosis and the epithelial-mesenchymal transition: Implications for inflammation and cancer therapy. Cytokine Growth Factor Rev. 2022 Apr;64:33-45. DOI: https://doi.org/10.1016/j.cytogfr.2022.01.006
Kazemi M, Emami J, Hasanzadeh F, Minaiyan M, Mirian M, Lavasanifar A, Mokhtari M. In Vitro and In Vivo Evaluation of Novel DTX-Loaded Multifunctional Heparin-Based Polymeric Micelles Targeting Folate Receptors and Endosomes. Recent Pat Anticancer Drug Discov. 2020;15(4):341-359. DOI: https://doi.org/10.2174/1574892815666201006124604
Kazemi, M., Emami, J., Hasanzadeh, F., Minaiyan, M., Mirian, M., & Lavasanifar, A. Pegylated multifunctional pH-responsive targeted polymeric micelles for ovarian cancer therapy: synthesis, characterization and pharmacokinetic study. International Journal of Polymeric Materials and Polymeric Biomaterials. 2021 Sep;70(14):1012-1026. DOI: https://doi.org/10.1080/00914037.2020.1776282
Molani, S., Madadi, M., & Wilkes, W. A partially observable Markov chain framework to estimate overdiagnosis risk in breast cancer screening: Incorporating uncertainty in patients adherence behaviors. Omega, Elsevier. 2019 Dec;89(C),40-53. DOI: https://doi.org/10.1016/j.omega.2018.09.009
Molani, S., Madadi, M., & Williams, D. Investigating the effectiveness of supplemental breast cancer screening tests considering radiologists’ bias. medRxiv. 2020.12.16.20248373. DOI: https://doi.org/10.1101/2020.12.16.20248373
Khorsandi Z, Afshinpour M, Molaei F, Askandar RH, Keshavarzipour F, Abbasi M, Sadeghi-Aliabadi H. Design and synthesis of novel phe-phe hydroxyethylene derivatives as potential coronavirus main protease inhibitors. J Biomol Struct Dyn. 2022 Oct;40(17):7940-7948. DOI: https://doi.org/10.1080/07391102.2021.1905549
Norouzi M, Hashemi M, Pouri Z. The Question of Global Society in Post-Corona Time: Towards a Paradigm Shift. Int J Community Wellbeing. 2021;4(3):339-343. DOI: https://doi.org/10.1007/s42413-021-00141-7
Khorani M, Bobe G, Matthews DG, Magana AA, Caruso M, Gray NE, Quinn JF, Stevens JF, Soumyanath A, Maier CS. The Impact of the hAPP695SW Transgene and Associated Amyloid-β Accumulation on Murine Hippocampal Biochemical Pathways. J Alzheimers Dis. 2022;85(4):1601-1619. DOI: https://doi.org/10.3233/JAD-215084
Mostoufi A, Chamkouri N, Kordrostami S, Alghasibabaahmadi E, Mojaddami A. 3-Hydroxypyrimidine-2, 4-dione Derivatives as HIV Reverse Transcriptase-Associated RNase H Inhibitors: QSAR Analysis and Molecular Docking Studies. Iran J Pharm Res. 2020 Winter;19(1):84-97.
Tomar N, Sadri S, Cowley AW Jr, Yang C, Quryshi N, Pannala VR, Audi SH, Dash RK. A thermodynamically-constrained mathematical model for the kinetics and regulation of NADPH oxidase 2 complex-mediated electron transfer and superoxide production. Free Radic Biol Med. 2019 Apr;134:581-597. DOI: https://doi.org/10.1016/j.freeradbiomed.2019.02.003
Rafieipour, H., Abdollah Zadeh, A., Moradan, A., Salekshahrezaee, Z. Study of Genes Associated With Parkinson Disease Using Feature Selection. Journal of Bioengineering Research. 2020 Dec;2(4),1-11.
Rezapour-Nasrabad, R. Transitional care model: managing the experience of hospital at home. Electronic Journal of General Medicine 2018 Aug;15(5):em73. DOI: https://doi.org/10.29333/ejgm/93445
Foo JB, Looi QH, Chong PP, Hassan NH, Yeo GEC, Ng CY, Koh B, How CW, Lee SH, Law JX. Comparing the Therapeutic Potential of Stem Cells and their Secretory Products in Regenerative Medicine. Stem Cells Int. 2021 Aug 19;2021:2616807. DOI: https://doi.org/10.1155/2021/2616807
Abdelgawad M, Allam S, Abdelmonaem Shaheen M, Ali Hussein M, Azmy Elkot H, Gaber A, et al. An overview of COVID-19 treatment: possible candidates based on drug repurposing and molecular docking. Canadian Journal of Medical Sciences. 2021 May;3(1):10–35.
Khosrotehrani, K. Mesenchymal stem cell therapy in skin: why and what for?. Experimental Dermatology. 2013 May;22(5):307-10. DOI: https://doi.org/10.1111/exd.12141
Razeghian-Jahromi I, Matta AG, Canitrot R, Zibaeenezhad MJ, Razmkhah M, Safari A, Nader V, Roncalli J. Surfing the clinical trials of mesenchymal stem cell therapy in ischemic cardiomyopathy. Stem Cell Res Ther. 2021 Jun 23;12(1):361. DOI: https://doi.org/10.1186/s13287-021-02443-1
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science. 1999 Apr 2;284(5411):143-7. DOI: https://doi.org/10.1126/science.284.5411.143
Hung SC, Chen NJ, Hsieh SL, Li H, Ma HL, Lo WH. Isolation and characterization of size-sieved stem cells from human bone marrow. Stem Cells. 2002;20(3):249-58. DOI: https://doi.org/10.1634/stemcells.20-3-249
Xie B, Chen S, Xu Y, Han W, Hu R, Chen M, He R, Ding S. Clinical Efficacy and Safety of Human Mesenchymal Stem Cell Therapy for Degenerative Disc Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stem Cells Int. 2021 Sep 13;2021:9149315. DOI: https://doi.org/10.1155/2021/9149315
Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12167-72. DOI: https://doi.org/10.1073/pnas.0604850103
Bunnell BA, Flaat M, Gagliardi C, Patel B, Ripoll C. Adipose-derived stem cells: isolation, expansion and differentiation. Methods. 2008 Jun;45(2):115-20. DOI: https://doi.org/10.1016/j.ymeth.2008.03.006
Rodríguez LV, Alfonso Z, Zhang R, Leung J, Wu B, Ignarro LJ. Clonogenic multipotent stem cells in human adipose tissue differentiate into functional smooth muscle cells. Proc Natl Acad Sci U S A. 2006 Aug 8;103(32):12167-72. DOI: https://doi.org/10.1073/pnas.0604850103
Ogawa R. The importance of adipose-derived stem cells and vascularized tissue regeneration in the field of tissue transplantation. Curr Stem Cell Res Ther. 2006 Jan;1(1):13-20. DOI: https://doi.org/10.2174/157488806775269043
Gstraunthaler, G. Alternatives to the use of fetal bovine serum: serum-free cell culture. ALTEX. 2003;20(4):275-81. PMID: 14671707. DOI: https://doi.org/10.14573/altex.2003.4.257
Martin MJ, Muotri A, Gage F, Varki A. Human embryonic stem cells express an immunogenic nonhuman sialic acid. Nat Med. 2005 Feb;11(2):228-32. DOI: https://doi.org/10.1038/nm1181
Komoda H, Okura H, Lee CM, Sougawa N, Iwayama T, Hashikawa T, Saga A, Yamamoto-Kakuta A, Ichinose A, Murakami S, Sawa Y, Matsuyama A. Reduction of N-glycolylneuraminic acid xenoantigen on human adipose tissue-derived stromal cells/mesenchymal stem cells leads to safer and more useful cell sources for various stem cell therapies. Tissue Eng Part A. 2010 Apr;16(4):1143-55. DOI: https://doi.org/10.1089/ten.tea.2009.0386
Kobayashi T, Watanabe H, Yanagawa T, Tsutsumi S, Kayakabe M, Shinozaki T, Higuchi H, Takagishi K. Motility and growth of human bone-marrow mesenchymal stem cells during ex vivo expansion in autologous serum. J Bone Joint Surg Br. 2005 Oct;87(10):1426-33. DOI: https://doi.org/10.1302/0301-620X.87B10.16160
Blande IS, Bassaneze V, Lavini-Ramos C, Fae KC, Kalil J, Miyakawa AA, Schettert IT, Krieger JE. Adipose tissue mesenchymal stem cell expansion in animal serum-free medium supplemented with autologous human platelet lysate. Transfusion. 2009 Dec;49(12):2680-5. DOI: https://doi.org/10.1111/j.1537-2995.2009.02346.x
Lindroos B, Aho KL, Kuokkanen H, Räty S, Huhtala H, Lemponen R, Yli-Harja O, Suuronen R, Miettinen S. Differential gene expression in adipose stem cells cultured in allogeneic human serum versus fetal bovine serum. Tissue Eng Part A. 2010 Jul;16(7):2281-94. DOI: https://doi.org/10.1089/ten.tea.2009.0621
Bieback K, Ha VA, Hecker A, Grassl M, Kinzebach S, Solz H, Sticht C, Klüter H, Bugert P. Altered gene expression in human adipose stem cells cultured with fetal bovine serum compared to human supplements. Tissue Eng Part A. 2010 Nov;16(11):3467-84. DOI: https://doi.org/10.1089/ten.tea.2009.0727
Jenhani F, Durand V, Ben Azouna N, Thallet S, Ben Othmen T, Bejaoui M, Domenech J. Human cytokine expression profile in various conditioned media for in vitro expansion bone marrow and umbilical cord blood immunophenotyped mesenchymal stem cells. Transplant Proc. 2011 Mar;43(2):639-43. DOI: https://doi.org/10.1016/j.transproceed.2011.01.021
Mimura S, Kimura N, Hirata M, Tateyama D, Hayashida M, Umezawa A, Kohara A, Nikawa H, Okamoto T, Furue MK. Growth factor-defined culture medium for human mesenchymal stem cells. Int J Dev Biol. 2011;55(2):181-7. DOI: https://doi.org/10.1387/ijdb.103232sm
Josh F, Kobe K, Tobita M, Tanaka R, Suzuki K, Ono K, Hyakusoku H, Mizuno H. Accelerated and safe proliferation of human adipose-derived stem cells in medium supplemented with human serum. J Nippon Med Sch. 2012;79(6):444-52. DOI: https://doi.org/10.1272/jnms.79.444
Im W, Chung JY, Kim SH, Kim M. Efficacy of autologous serum in human adipose-derived stem cells; cell markers, growth factors and differentiation. Cell Mol Biol (Noisy-le-grand). 2011 Mar 15;57 Suppl:OL1470-5. PMID: 21396339.
Bahn JJ, Chung JY, Im W, Kim M, Kim SH. Suitability of autologous serum for expanding rabbit adipose-derived stem cell populations. J Vet Sci. 2012 Dec;13(4):413-7. DOI: https://doi.org/10.4142/jvs.2012.13.4.413
de Paula AC, Zonari AA, Martins TM, Novikoff S, da Silva AR, Correlo VM, Reis RL, Gomes DA, Goes AM. Human serum is a suitable supplement for the osteogenic differentiation of human adipose-derived stem cells seeded on poly-3-hydroxibutyrate-co-3-hydroxyvalerate scaffolds. Tissue Eng Part A. 2013 Jan;19(1-2):277-89. DOI: https://doi.org/10.1089/ten.tea.2012.0189
Koellensperger E, Bollinger N, Dexheimer V, Gramley F, Germann G, Leimer U. Choosing the right type of serum for different applications of human adipose tissue-derived stem cells: influence on proliferation and differentiation abilities. Cytotherapy. 2014 Jun;16(6):789-99. DOI: https://doi.org/10.1016/j.jcyt.2014.01.007
Tonarova P, Lochovska K, Pytlik R, Hubalek Kalbacova M. The Impact of Various Culture Conditions on Human Mesenchymal Stromal Cells Metabolism. Stem Cells Int. 2021 Mar 1;2021:6659244. DOI: https://doi.org/10.1155/2021/6659244
Dreher L, Elvers-Hornung S, Brinkmann I, Huck V, Henschler R, Gloe T, Klüter H, Bieback K. Cultivation in human serum reduces adipose tissue-derived mesenchymal stromal cell adhesion to laminin and endothelium and reduces capillary entrapment. Stem Cells Dev. 2013 Mar 1;22(5):791-803. DOI: https://doi.org/10.1089/scd.2012.0051
Hemeda H, Giebel B, Wagner W. Evaluation of human platelet lysate versus fetal bovine serum for culture of mesenchymal stromal cells. Cytotherapy. 2014 Feb;16(2):170-80. DOI: https://doi.org/10.1016/j.jcyt.2013.11.004
Piletz JE, Drivon J, Eisenga J, Buck W, Yen S, McLin M, Meruvia W, Amaral C, Brue K. Human Cells Grown With or Without Substitutes for Fetal Bovine Serum. Cell Med. 2018 Jun 6;10:2155179018755140. DOI: https://doi.org/10.1177/2155179018755140

How to Cite

Ghoreishi, A. S., Iranmanesh, E., Rastegarpouyani, H., Mokhtarian, S., Poshtchaman, Z., Javadi, Z. S., & Khoshdel, A. (2023). Better isolation, proliferation and differentiation of human adipose-derived mesenchymal stem cells using human serum. European Journal of Translational Myology, 33(1). https://doi.org/10.4081/ejtm.2023.10834