The role of bone mineral density and cartilage volume to predict knee cartilage degeneration

Published: 28 June 2022
Abstract Views: 1152
PDF: 588
HTML: 8
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Knee Osteoarthritis (OA) is a highly prevalent condition affecting knee joint that causes loss of physical function and pain. Clinical treatments are mainly focused on pain relief and limitation of disabilities; therefore, it is crucial to find new paradigms assessing cartilage conditions for detecting and monitoring the progression of OA. The goal of this paper is to highlight the predictive power of several features, such as cartilage density, volume and surface. These features were extracted from the 3D reconstruction of knee joint of forty-seven different patients, subdivided into two categories: degenerative and non-degenerative. The most influent parameters for the degeneration of the knee cartilage were determined using two machine learning classification algorithms (logistic regression and support vector machine); later, box plots, which depicted differences between the classes by gender, were presented to analyze several of the key features’ trend. This work is part of a strategy that aims to find a new solution to assess cartilage condition based on new-investigated features.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Lespasio MJ, Piuzzi NS, Husni ME, Muschler GF, Guarino A, Mont MA. Knee Osteoarthritis: A Primer. Perm J. 2017;21:16-183. DOI: https://doi.org/10.7812/TPP/16-183
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012 Jun;64(6):1697-707. DOI: https://doi.org/10.1002/art.34453
Lee LS, Chan PK, Wen C, Fung WC, Cheung A, Chan VWK, Cheung MH, Fu H, Yan CH, Chiu KY. Artificial intelligence in diagnosis of knee osteoarthritis and prediction of arthroplasty outcomes: a review. Arthroplasty. 2022 Mar 5;4(1):16. DOI: https://doi.org/10.1186/s42836-022-00118-7
Ciliberti FK, Guerrini L, Gunnarsson AE, Recenti M, Jacob D, Cangiano V, Tesfahunegn YA, Islind AS, Tortorella F, Tsirilaki M, Jónsson H Jr, Gargiulo P, Aubonnet R. CT- and MRI-Based 3D Reconstruction of Knee Joint to Assess Cartilage and Bone. Diagnostics (Basel). 2022 Jan 22;12(2):279. DOI: https://doi.org/10.3390/diagnostics12020279
Esposito L, Bifulco P, Gargiulo P, Gíslason MK, Cesarelli M, Iuppariello L, Jónsson H, Cutolo A, Fraldi M. Towards a patient-specific estimation of intra-operative femoral fracture risk. Comput Methods Biomech Biomed Engin. 2018 Sep;21(12):663-672. DOI: https://doi.org/10.1080/10255842.2018.1508570
Latessa I, Ricciardi C, Jacob D, Jónsson H Jr, Gambacorta M, Improta G, Gargiulo P. Health technology assessment through Six Sigma Methodology to assess cemented and uncemented protheses in total hip arthroplasty. Eur J Transl Myol. 2021 Mar 9;31(1):9651. DOI: https://doi.org/10.4081/ejtm.2021.9651
Gargiulo P, Helgason T, Reynisson PJ, Helgason B, Kern H, Mayr W, Ingvarsson P, Carraro U. Monitoring of muscle and bone recovery in spinal cord injury patients treated with electrical stimulation using three-dimensional imaging and segmentation techniques: methodological assessment. Artif Organs. 2011 Mar;35(3):275-81. DOI: https://doi.org/10.1111/j.1525-1594.2011.01214.x
Esposito L, Bifulco P, Gargiulo P, Fraldi M. Singularity-free finite element model of bone through automated voxel-based reconstruction. Comput Methods Biomech Biomed Engin. 2016 Feb;19(3):257-262. DOI: https://doi.org/10.1080/10255842.2015.1014347
Ricciardi C, Jónsson H Jr, Jacob D, Improta G, Recenti M, Gíslason MK, Cesarelli G, Esposito L, Minutolo V, Bifulco P, Gargiulo P. Improving Prosthetic Selection and Predicting BMD from Biometric Measurements in Patients Receiving Total Hip Arthroplasty. Diagnostics (Basel). 2020 Oct 14;10(10):815. DOI: https://doi.org/10.3390/diagnostics10100815
Recenti M, Ricciardi C, Aubonnet R, Esposito L, Jónsson H, Gargiulo P. A Regression Approach to Assess Bone Mineral Density of Patients undergoing Total Hip Arthroplasty through Gait Analysis. In: 2020 IEEE International Symposium on Medical Measurements and Applications (MeMeA), 2020 Jun 1 – July 1, Bari, Italy. Piscataway: USA. pp. 1-6. DOI: https://doi.org/10.1109/MeMeA49120.2020.9137182
Kotsiantis SB, Zaharakis I, Pintelas P. Supervised machine learning: A review of classification techniques. In Maglogiannis I, Karpouzis K, Wallace BA, Soldatos J, eds. Emerging Artificial Intelligence Applications in Computer Engineering, 2007 Jun 10, Athens, Greece; Amsterdam: The Netherlands, 2007; pp. 3–24.
Stoltzfus JC. Logistic regression: a brief primer. Acad Emerg Med. 2011 Oct;18(10):1099-104. DOI: https://doi.org/10.1111/j.1553-2712.2011.01185.x
Mangal A, Holm EA. A comparative study of feature selection methods for stress hotspot classification in materials. Integrating Materials and Manufacturing Innovation, 2018 Sep;7(3): 87-95. DOI: https://doi.org/10.1007/s40192-018-0109-8
Hossin M, Sulaiman MN. A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process. 2015 Mar;5(2):1-11. DOI: https://doi.org/10.5121/ijdkp.2015.5201
Matzat SJ, Kogan F, Fong GW, Gold GE. Imaging strategies for assessing cartilage composition in osteoarthritis. Curr Rheumatol Rep. 2014 Nov;16(11):462. DOI: https://doi.org/10.1007/s11926-014-0462-3
Watson PJ, Carpenter TA, Hall LD, Tyler JA. Cartilage swelling and loss in a spontaneous model of osteoarthritis visualized by magnetic resonance imaging. Osteoarthritis Cartilage. 1996 Sep;4(3):197-207. DOI: https://doi.org/10.1016/S1063-4584(96)80016-1
Nickien M, Thambyah A, Broom ND. How a decreased fibrillar interconnectivity influences stiffness and swelling properties during early cartilage degeneration. J Mech Behav Biomed Mater. 2017 Nov;75:390-398. DOI: https://doi.org/10.1016/j.jmbbm.2017.07.042
Cicuttini F, Forbes A, Morris K, Darling S, Bailey M, Stuckey S. Gender differences in knee cartilage volume as measured by magnetic resonance imaging. Osteoarthritis Cartilage. 1999 May;7(3):265-71. DOI: https://doi.org/10.1053/joca.1998.0200
Bruyere O, Dardenne C, Lejeune E, Zegels B, Pahaut A, Richy F, Seidel L, Ethgen O, Henrotin Y, Reginster JY. Subchondral tibial bone mineral density predicts future joint space narrowing at the medial femoro-tibial compartment in patients with knee osteoarthritis. Bone. 2003 May;32(5):541-5. DOI: https://doi.org/10.1016/S8756-3282(03)00059-0
Burnett WD, Kontulainen SA, McLennan CE, Hazel D, Talmo C, Wilson DR, Hunter DJ, Johnston JD. Knee osteoarthritis patients with more subchondral cysts have altered tibial subchondral bone mineral density. BMC Musculoskelet Disord. 2019 Jan 5;20(1):14. DOI: https://doi.org/10.1186/s12891-018-2388-9
Abdin-Mohamed M, Jameson K, Dennison EM, Cooper C, Arden NK; Hertfordshire Cohort Study Group. Volumetric bone mineral density of the tibia is not increased in subjects with radiographic knee osteoarthritis. Osteoarthritis Cartilage. 2009 Feb;17(2):174-7. DOI: https://doi.org/10.1016/j.joca.2008.06.004
Choi ES, Shin HD, Sim JA, Na YG, Choi WJ, Shin DD, Baik JM. Relationship of Bone Mineral Density and Knee Osteoarthritis (Kellgren-Lawrence Grade): Fifth Korea National Health and Nutrition Examination Survey. Clin Orthop Surg. 2021 Mar;13(1):60-66. DOI: https://doi.org/10.4055/cios20111
Khalid H, Hussain M, Al Ghamdi MA, Khalid T, Khalid K, Khan MA, Fatima K, Masood K, Almotiri SH, Farooq MS, Ahmed A. A Comparative Systematic Literature Review on Knee Bone Reports from MRI, X-rays and CT Scans Using Deep Learning and Machine Learning Methodologies. Diagnostics (Basel). 2020 Jul 26;10(8):518. DOI: https://doi.org/10.3390/diagnostics10080518
Hinterwimmer F, Lazic I, Suren C, Hirschmann MT, Pohlig F, Rueckert D, Burgkart R, von Eisenhart-Rothe R. Machine learning in knee arthroplasty: specific data are key-a systematic review. Knee Surg Sports Traumatol Arthrosc. 2022 Feb;30(2):376-388. DOI: https://doi.org/10.1007/s00167-021-06848-6
Jafarzadeh S, Felson D, Nevitt M, Torner J, Lewis C, Roemer F, Guermazi A, Neogi T. Machine Learning-Based Prediction of Knee Replacement in Persons with and Without Radiographic Osteoarthritis Using Clinical and Imaging Features of Osteoarthritis: The Multicenter Osteoarthritis Study [abstract]. Arthritis Rheumatol. 2020 Nov; 72 (suppl 10).
Macri EM, Neogi T, Jarraya M, Guermazi A, Roemer F, Lewis CE, Torner JC, Lynch JA, Tolstykh I, Reza I Jafarzadeh SR, Stefanik JJ. Can MRI‐defined osteoarthritis features explain anterior knee pain in individuals with, or at risk for, knee osteoarthritis? The MOST Study. Arthritis Care & Research; 2021. doi: 10.1002/acr.24604. DOI: https://doi.org/10.1002/acr.24604
Tiulpin A, Klein S, Bierma-Zeinstra SMA, Thevenot J, Rahtu E, Meurs JV, Oei EHG, Saarakkala S. Multimodal Machine Learning-based Knee Osteoarthritis Progression Prediction from Plain Radiographs and Clinical Data. Sci Rep. 2019 Dec 27;9(1):20038. DOI: https://doi.org/10.1038/s41598-019-56527-3
Jamshidi A, Pelletier JP, Labbe A, Abram F, Martel-Pelletier J, Droit A. Machine Learning-Based Individualized Survival Prediction Model for Total Knee Replacement in Osteoarthritis: Data From the Osteoarthritis Initiative. Arthritis Care Res (Hoboken). 2021 Oct;73(10):1518-1527. DOI: https://doi.org/10.1002/acr.24601
Kokkotis C, Moustakidis S, Giakas G, Tsaopoulos D. Identification of Risk Factors and Machine Learning-Based Prediction Models for Knee Osteoarthritis Patients. Appl Scienc. 2020 Sept; 10(19):6797. DOI: https://doi.org/10.3390/app10196797
Kokkotis C, Ntakolia C, Moustakidis S, Giakas G, Tsaopoulos D. Explainable machine learning for knee osteoarthritis diagnosis based on a novel fuzzy feature selection methodology. Phys Eng Sci Med. 2022 Mar;45(1):219-229. DOI: https://doi.org/10.1007/s13246-022-01106-6

How to Cite

Ciliberti, F. K., Cesarelli, G., Guerrini, L., Gunnarsson, A. E., Forni, R., Aubonnet, R., Recenti, M., Jacob, D., Jónsson, Jr, H., Cangiano, V., Islind, A. S., Gambacorta, M., & Gargiulo, P. (2022). The role of bone mineral density and cartilage volume to predict knee cartilage degeneration. European Journal of Translational Myology, 32(2). https://doi.org/10.4081/ejtm.2022.10678