The role of age on neuromuscular performance decay induced by a maximal intensity sprint session in a group of competitive endurance athletes

Submitted: 24 January 2022
Accepted: 21 February 2022
Published: 10 March 2022
Abstract Views: 1004
PDF: 687
HTML: 4
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Age-related changes in the neuromuscular system functions may affect profoundly high-level athletes' performance across their careers. The present study aimed to analyse the fatiguing effect of a maximal intensity sprint session (MISS) on competitive athletes of different ages. Thirty-one competitive endurance athletes completed a knee extensors and flexors' maximal-voluntary-isometric-contraction (MVC) test before and after a maximal-intensity-sprint-session (MISS) consisting of 4x15s Wingate-tests. The data have been stratified considering three age categories (18-28, n=11, 29-38; n=10; 39-43, n=10). Overall, both quadricep and hamstring muscles early and late rate of torque development (RTD) dropped significantly more than the maximal voluntary torque (MVT) (p<.05). Age had a significant effect on early RTD, with older athletes exhibiting greater RTD (p<.05). A significant effect of age also emerged for the changes in surface sEMG variables, in which the frequency spectrum variables dropped significantly more than the sEMG amplitude (RMS) (p<.05). The dynamics of changes in neuromuscular performance markers after a MISS suggested that getting older competitive athletes may potentially experience a greater loss in early explosive strength compared to maximal or late explosive strength.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Longman DP, Wells JCK, Stock JT. Human athletic paleobiology; using sport as a model to investigate human evolutionary adaptation. Am J Phys Anthropol. 2020 May;171 Suppl 70(Suppl 70):42-59. Epub 2020 Jan 20. DOI: https://doi.org/10.1002/ajpa.23992
de Subijana CL, Galatti L, Moreno R, Chamorro JL. Analysis of the Athletic Career and Retirement Depending on the Type of Sport: A Comparison between Individual and Team Sports. Int J Environ Res Public Health. 2020 Dec 11;17(24):9265. DOI: https://doi.org/10.3390/ijerph17249265
Allen SV, Hopkins WG. Age of Peak Competitive Performance of Elite Athletes: A Systematic Review. Sports Med. 2015 Oct;45(10):1431-41. DOI: https://doi.org/10.1007/s40279-015-0354-3
Thomas E, Bianco A, Raia T, Messina G, Tabacchi G, Bellafiore M, Paoli A, Palma A. Relationship between velocity and muscular endurance of the upper body. Hum Mov Sci. 2018 Aug;60:175-182. Epub 2018 Jun 21. DOI: https://doi.org/10.1016/j.humov.2018.06.008
Soto-Quijano DA. The Competitive Senior Athlete. Phys Med Rehabil Clin N Am. 2017 Nov;28(4):767-776. DOI: https://doi.org/10.1016/j.pmr.2017.06.009
Wright VJ, Perricelli BC. Age-related rates of decline in performance among elite senior athletes. Am J Sports Med. 2008 Mar;36(3):443-50. Epub 2007 Nov 30. DOI: https://doi.org/10.1177/0363546507309673
Gorzi A, Khantan M, Khademnoe O, Eston R. Prediction of elite athletes' performance by analysis of peak-performance age and age-related performance progression. Eur J Sport Sci. 2021 Jan 24:1-14. Epub ahead of print. DOI: https://doi.org/10.1080/17461391.2020.1867240
Faulkner JA, Davis CS, Mendias CL, Brooks SV. The aging of elite male athletes: age-related changes in performance and skeletal muscle structure and function. Clin J Sport Med. 2008 Nov;18(6):501-7. DOI: https://doi.org/10.1097/JSM.0b013e3181845f1c
Hunter SK, Pereira HM, Keenan KG. The aging neuromuscular system and motor performance. J Appl Physiol (1985). 2016 Oct 1;121(4):982-995. Epub 2016 Aug 11. DOI: https://doi.org/10.1152/japplphysiol.00475.2016
Battaglia G, Giustino V, Messina G, Faraone M, Brusa J, Bordonali A, Barbagallo M, Palma A, Dominguez L-J. Walking in Natural Environments as Geriatrician's Recommendation for Fall Prevention: Preliminary Outcomes from the "Passiata Day" Model. Sustainability. 2020 Mar 29; 12(7):2684. DOI: https://doi.org/10.3390/su12072684
Chartogne M, Rahmani A, Nicolon L, Jubeau M, Morel B. Neuromuscular fatigability amplitude and aetiology are interrelated across muscles. Exp Physiol. 2020 Oct;105(10):1758-1766. Epub 2020 Sep 7. DOI: https://doi.org/10.1113/EP088682
D'Emanuele S, Maffiuletti NA, Tarperi C, Rainoldi A, Schena F, Boccia G. Rate of Force Development as an Indicator of Neuromuscular Fatigue: A Scoping Review. Front Hum Neurosci. 2021 Jul 9;15:701916. DOI: https://doi.org/10.3389/fnhum.2021.701916
Thompson BJ, Ryan ED, Herda TJ, Costa PB, Herda AA, Cramer JT. Age-related changes in the rate of muscle activation and rapid force characteristics. Age (Dordr). 2014 Apr;36(2):839-49. Epub 2013 Dec 12. DOI: https://doi.org/10.1007/s11357-013-9605-0
Bassan NM, César TE, Denadai BS, Greco CC. Relationship Between Fatigue and Changes in Swim Technique During an Exhaustive Swim Exercise. Int J Sports Physiol Perform. 2016 Jan;11(1):33-9. Epub 2015 Apr 7. DOI: https://doi.org/10.1123/ijspp.2014-0310
Boccia G, Dardanello D, Tarperi C, Festa L, La Torre A, Pellegrini B, Schena F, Rainoldi A. Fatigue-induced dissociation between rate of force development and maximal force across repeated rapid contractions. Hum Mov Sci. 2017 Aug;54:267-275. Epub 2017 Jun 6. DOI: https://doi.org/10.1016/j.humov.2017.05.016
Boccia G, Dardanello D, Zoppirolli C, Bortolan L, Cescon C, Schneebeli A, Vernillo G, Schena F, Rainoldi A, Pellegrini B. Central and peripheral fatigue in knee and elbow extensor muscles after a long-distance cross-country ski race. Scand J Med Sci Sports. 2017 Sep;27(9):945-955. Epub 2016 Jun 12. PMID: 27293016. DOI: https://doi.org/10.1111/sms.12718
Girard O, Bishop DJ, Racinais S. Hot conditions improve power output during repeated cycling sprints without modifying neuromuscular fatigue characteristics. Eur J Appl Physiol. 2013 Feb;113(2):359-69. Epub 2012 Jun 29. PMID: 22743981. DOI: https://doi.org/10.1007/s00421-012-2444-3
Girard O, Racinais S, Périard JD. Tennis in hot and cool conditions decreases the rapid muscle torque production capacity of the knee extensors but not of the plantar flexors. Br J Sports Med. 2014 Apr;48 Suppl 1(Suppl 1):i52-8. DOI: https://doi.org/10.1136/bjsports-2013-093286
Girard O, Nybo L, Mohr M, Racinais S. Plantar flexor neuromuscular adjustments following match-play football in hot and cool conditions. Scand J Med Sci Sports. 2015 Jun;25 Suppl 1:154-63. DOI: https://doi.org/10.1111/sms.12371
Lapole T, Ahmaidi S, Gaillien B, Leprêtre PM. Influence of dorsiflexion shoes on neuromuscular fatigue of the plantar flexors after combined tapping-jumping exercises in volleyball players. J Strength Cond Res. 2013 Jul;27(7):2025-33. DOI: https://doi.org/10.1519/JSC.0b013e3182773271
De Luca CJ. Myoelectrical manifestations of localised muscular fatigue in humans. Crit Rev Biomed Eng. 1984;11(4):251-79.
Beelen A, Sargeant AJ. Effect of prior exercise at different pedalling frequencies on maximal power in humans. Eur J Appl Physiol Occup Physiol. 1993;66(2):102-7. DOI: https://doi.org/10.1007/BF01427049
Wang R, Fukuda DH, Stout JR, Robinson EH, Miramonti AA, Fragala MS, Hoffman JR. Evaluation of Electromyographic Frequency Domain Changes during a Three-Minute Maximal Effort Cycling Test. J Sports Sci Med. 2015 May 8;14(2):452-8.
Jeukendrup AE, Craig NP, Hawley JA. The bioenergetics of World Class Cycling. J Sci Med Sport. 2000 Dec;3(4):414-33. DOI: https://doi.org/10.1016/S1440-2440(00)80008-0
World Medical Association. World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects. JAMA. 2013 Nov 27;310(20):2191-4. DOI: https://doi.org/10.1001/jama.2013.281053
Hermens HJ, Freriks B, Disselhorst-Klug C, Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J Electromyogr Kinesiol. 2000 Oct;10(5):361-74. DOI: https://doi.org/10.1016/S1050-6411(00)00027-4
Maffiuletti NA, Aagaard P, Blazevich AJ, Folland J, Tillin N, Duchateau J. Rate of force development: physiological and methodological considerations. Eur J Appl Physiol. 2016 Jun;116(6):1091-116. Epub 2016 Mar 3. DOI: https://doi.org/10.1007/s00421-016-3346-6
Ferguson CJ. An effect size primer: A guide for clinicians and researchers. Prof Psychol Res Pract. 2009;40(5):532-538. DOI: https://doi.org/10.1037/a0015808
Greer F, Morales J, Coles M. Wingate performance and surface EMG frequency variables are not affected by caffeine ingestion. Appl Physiol Nutr Metab. 2006 Oct;31(5):597-603. DOI: https://doi.org/10.1139/h06-030
Hunter AM, St Clair Gibson A, Lambert MI, Nobbs L, Noakes TD. Effects of supramaximal exercise on the electromyographic signal. Br J Sports Med. 2003 Aug;37(4):296-9. DOI: https://doi.org/10.1136/bjsm.37.4.296
Farina D, Merletti R, Disselhorst-Klug C. Multi-Channel Techniques for Information Extraction from the Surface EMG. In: Electromyography. John Wiley & Sons, Ltd; 2004:169-203. DOI: https://doi.org/10.1002/0471678384.ch7
Larsson L, Li X, Frontera WR. Effects of aging on shortening velocity and myosin isoform composition in single human skeletal muscle cells. Am J Physiol. 1997 Feb;272(2 Pt 1):C638-49. DOI: https://doi.org/10.1152/ajpcell.1997.272.2.C638
Krivickas LS, Suh D, Wilkins J, Hughes VA, Roubenoff R, Frontera WR. Age- and gender-related differences in maximum shortening velocity of skeletal muscle fibers. Am J Phys Med Rehabil. 2001 Jun;80(6):447-455; quiz 456-7. DOI: https://doi.org/10.1097/00002060-200106000-00012
McComas AJ. Human neuromuscular adaptations that accompany changes in activity. Med Sci Sports Exerc. 1994 Dec;26(12):1498-509. DOI: https://doi.org/10.1249/00005768-199412000-00014
Lucía A, Hoyos J, Pardo J, Chicharro JL. Metabolic and neuromuscular adaptations to endurance training in professional cyclists: a longitudinal study. Jpn J Physiol. 2000 Jun;50(3):381-8. DOI: https://doi.org/10.2170/jjphysiol.50.381
Piasecki M, Ireland A, Stashuk D, Hamilton-Wright A, Jones DA, McPhee JS. Age-related neuromuscular changes affecting human vastus lateralis. J Physiol. 2016 Aug 15;594(16):4525-36. Epub 2015 Dec 15. DOI: https://doi.org/10.1113/JP271087
Piasecki M, Ireland A, Coulson J, Stashuk DW, Hamilton-Wright A, Swiecicka A, Rutter MK, McPhee JS, Jones DA. Motor unit number estimates and neuromuscular transmission in the tibialis anterior of master athletes: evidence that athletic older people are not spared from age-related motor unit remodeling. Physiol Rep. 2016 Oct;4(19):e12987. DOI: https://doi.org/10.14814/phy2.12987
Cifrek M, Medved V, Tonković S, Ostojić S. Surface EMG based muscle fatigue evaluation in biomechanics. Clin Biomech (Bristol, Avon). 2009 May;24(4):327-40. 2009.01.010. Epub 2009 Mar 13. DOI: https://doi.org/10.1016/j.clinbiomech.2009.01.010

How to Cite

Cesanelli, L., Eimantas, N. ., Iovane, A., Messina, G., & Satkunskiene, D. . (2022). The role of age on neuromuscular performance decay induced by a maximal intensity sprint session in a group of competitive endurance athletes. European Journal of Translational Myology, 32(1). https://doi.org/10.4081/ejtm.2022.10378