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Abstract 

Aging well is directly associated to a healthy lifestyle. The focus of this paper is to relate 
individual wellness with medical image features. Non-linear trimodal regression analysis 
(NTRA) is a novel method that models the radiodensitometric distributions of x-ray computed 
tomography (CT) cross-sections. It generates 11 patient-specific parameters that describe the 
quality and quantity of  muscle, fat, and connective tissues. In this research, the relationship of 
these 11 NTRA parameters with age, physical activity, and lifestyle is investigated in the 3,157 
elderly volunteers AGES-I dataset. First, univariate statistical analyses were performed, and 
subjects were grouped by age and self-reported past (youth–midlife) and present (within 12 
months of the survey) physical activity to ascertain which parameters were the most influential. 
Then, machine learning (ML) analyses were conducted to classify patients using NTRA 
parameters as input features for three ML algorithms. ML is also used to classify a Lifestyle 
index using the age groups. This classification analysis yielded robust results with the lifestyle 
index underlying the relevant differences of the soft tissues between age groups, especially in fat 
and connective tissue. Univariate statistical models suggested that NTRA parameters may be 
susceptible to age and differences between past and present physical activity levels. Moreover, 
for both age and physical activity, lean muscle parameters expressed more significant variation 
than fat and connective tissues. 
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 The loss of skeletal muscle mass and function is 
acknowledged in the literature as an independent risk 
factor for impairments and deleterious health effects in 
the elderly population.1-3 This phenomenon, widely 
known as sarcopenia, has been directly linked to fracture 
risk, bone fragility, disability, and injurious falls.4 Aging-
related pathologies and comorbidities, such as diabetes,5 
hypertension,6 and cardiovascular disease,7 have been 
likewise associated with sarcopenia and decreased 
muscle strength. Moderate to vigorous physical activity 
is protective against the adverse effects of sarcopenia.8 
Different exercise training approaches not only improve 
the overall quality of life,9 but also preserve the health of 
muscle fibers that otherwise weaken with age.10,11 
Muscle mass and strength can be a predictor factor of 
incident mobility limitation.12 Physical activity levels are 

predicted in the literature mainly by follow-up studies: 
physical activity levels in adulthood are related to the 
performances and sports activities in adolescence.13 
Muscle mass and strength can also be a predictor of 
longevity when considering body mass index as a 
primary indicator;14 however, the concomitant 
assessment of age using quantitative assessment 
modalities of lean muscle or other soft tissue remains 
absent in the literature. Instead, machine learning (ML) 
and deep learning approaches have been used for this 
purpose, using diffusion tensor imaging,15 and structural 
brain MRI,16 as initial classification features. 
Our team recently developed a novel soft tissue 
assessment method based upon cross-sectional computed 
tomography (CT) images, known as non-linear trimodal 
regression analysis (NTRA), which models 
radiodensitometric distributions to generate 11 patient-
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specific soft tissue parameters.17,18 This method was 
motivated by identifying an alternative approach to study 
changes in soft tissue changes mass and quality as a 
quantitative construct for sarcopenia in the elderly. In this 
regard, NTRA parameters have been shown to be 
predictive factors for lower extremity function, 
cardiovascular pathophysiology, body mass index, 
hypertension, and diabetes mellitus.19-24 However, 
exploring the sensitivity of these parameters to age and 
physical activity using univariate statistical analyses 
remained unperformed. Further analysis is performed 
using the lifestyle index presented by Recenti et al.21 
based on both physical activity and smoking status to 
study the radiodensitometry differences between groups 
of age. Fig. 1 shows the study workflow, where we report 
the use of NTRA parameters to conduct statistical 
analyses to classify age, physical activity levels, and 
lifestyle index. 

Materials and Methods 
AGES-Reykjavik Database  
The database used in the present study was an initial 
cross-sectional subset of the AGES-Reykjavík study 
known as AGES-I. This database contains data from 
3,157 healthy elderly subjects from 66–93 years of age 
(mean: 74.87) who participated in a multimodal series of 
biometric measurements.25 The Icelandic National 
Bioethics Committee gave the ethical approval for this 
work (RU Code of Ethics, cf. Paragraph 3 in Article 2 of 
the Higher Education Institution Act no. 63/2006). 
Informed consent was obtained from all participants. 
Subjects received CT scans and were also surveyed for 
additional information, such as age and physical activity 
levels. Due to twenty missing surveys, our total sample 
size for physical activity analyses was n = 3.137 subjects. 

For this study, the AGES-I database was divided into 
three groups according to three age classes: the first 
group is composed of people between 66 and 72 years of 
age (total of 1.176 subjects), while the second group age 
interval was 73-79 years (1.371 subjects), and the third 
was from 80-83 years (610 subjects). Five categories of 
self-reported physical activity frequency were defined in 
the AGES-I database for both past (youth or midlife) and 
present levels (within 12 months of the survey): 'never', 
'rarely', 'occasionally', 'moderate', and 'high'. Based on 
this self-reported information, the database was again 
divided into three classes. The "Frequent" class included 
people that performed moderate or high levels of activity 
in the past or present (1.462 subjects), while the 
"Occasional" class included subjects with occasional 
activity frequency in the past or present (488 subjects). 
All remaining subjects were placed in the "Rare - No 
Activity" class (1.187 subjects). The Lifestyle Index, part 
of a more extensive binary-tree division of the AGES-I 
database, as previously published in Recenti M, et al. 
(2020),21 divides the cohort into healthy (469) and not 
healthy (2668) individuals according to their self-
reported physical activity frequency and smoking status. 
The Mid-Thigh CT-scan acquisition protocol, described 
in detail in Edmunds KJ et al. (2016) gives 
radiodensitometric distributions from cross-sectional 
pixel matrices defined using transformed radiodensity 
values across the range for soft tissue, between -200 and 
200 Hounsfield Units (HU).17  

Non-Linear Trimodal Regression 
The NTRA method, described for the first time in 2018 
by Edmunds et al.,17 interprets each HU distribution as a 
quasi-probability density function defined by Gaussian 
radiodensity distributions of three soft tissue types: lean 

 
Fig 1. Workflow of the present study: 11 soft tissue radiodensity parameters extracted from a mid-thigh CT-Scan 

are used to conduct statistical analysis and classify age, self-reported physical activity, and a lifestyle index 
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muscle [41 to 200 HU], fat [-200 to -10 HU], and loose 
connective tissue and atrophic muscle [-9 to 40 HU]. Eq. 
1 defines this trimodal quasi-probability density function 
where N is the distribution amplitude, μ is the location in 
HU, and σ is the distribution width (Figure 1). The 
skewness term, α, considers the inwardly sloping 
asymmetries, and it is not considered for the central 
connective tissue distribution. This definition allows for 
the subject-specific fitting of HU distribution curves via 
standard error minimization at each radio-absorption bin 
using a generalized reduced gradient algorithm. This 
results in the extraction of 11 subject-specific NTRA 
parameters.  
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Machine Learning: tools, algorithms, evaluation metrics 
Knime analytics platform has been employed in this 
study to perform ML analyses for both regression and 
classification, as already performed in biomedical 
literature.26-30 Three popular tree-based algorithms were 
employed: random forests (RF), ADA-boosting (ADA-
B), and gradient boosting (GB) combined with 10-fold 
cross-validation. The Synthetic Minority Oversampling 
Technique (SMOTE) is also performed. SMOTE was 
implemented to increase the quality of the classification, 
oversampling the minority classes. Key evaluation 
metrics were considered to evaluate the present 
regression results: Coefficient of Determination (R2), 
Mean Absolute Error (MAE), Mean Squared Error 
(MSE), and Root Mean Squared Error (RMSE). For ML 
classification analysis, Accuracy, Sensitivity, and 
Specificity were used as evaluation metrics. 

Results 
Age: Statistical Analysis 
After assessing the non-normality of NTRA parameters, 
the dataset was divided into three subgroups according to 
age, and a one-way Kruskal Wallis test was performed. 
The mean and the standard deviations of age for each 
group are as follows: Group 1: 70.06 ± 1.61 years; Group 
2: 75.66 ± 1.86 years; and Group 3: 82.35 ± 2.39 years. 
This assessment shows that all the NTRA parameters 
excluding the location of the connective tissue resulted in 
statistically significant groupwise differences. 
Statistically significant differences were found in two out 
of three parameters in connective tissue, compared to 
four of four in both muscle and fat. After this Kruskal 
Wallis test, a posthoc test was performed: here, the 
differences in each parameter are computed according to 
age by couples of groups. Several differences were 
captured through the posthoc test, excluding the 
amplitude of fat tissue. Muscle was the tissue with the 
greatest number of statistically significant differences 

among all three age groups, followed by fat tissue. Fat 
skewness, connective width, and muscle amplitude, 
location, and skewness distinguished all three age 
groups. 

Physical Activity: Statistical Analysis 
Next, NTRA parameters were investigated according to 
physical activity using the same statistical analysis 
workflow. A one-way Kruskal Wallis test is performed. 
Subjects were divided into three activity level classes, 
“Rare - No Activity”, “Occasional”, and “Frequent” 
(respectively Groups 1, 2, and 3). Overall, 7 out of 11 
parameters were statistically significant. Statistically 
significant differences were found in one out of three 
NTRA parameters in connective tissue, four out of four 
in muscle, and two out of three in fat. After the Kruskal 
Wallis test, a posthoc test was analogously performed. 
Several differences were captured through this second 
posthoc test. Muscle was again the tissue with the 
greatest number of statistically significant differences 
among all three groups, followed by fat. No parameter 
distinguished all three groups, but connective location, 
muscle width and skewness, and fat amplitude, location, 
and width were all able to distinguish subjects by activity 
level. 

Machine Learning for Age and Physical Activity 
ML regression models were next assembled, first 
focusing on the classification of subject age using NTRA 
parameters as initial features. Only RF and GB 
algorithms are reported in this analysis, as ADA-B results 
were consistently poor compared to these other two 
algorithms. Age regression was performed by 
considering the three age groups separately: from 66-72 
years of age with 1,176 subjects, 73-79 years with 1,371, 
and 80-93 years with 610. R2 results were generally 
weak, indicating the low variance captured by the 
NTRA-based model. On the contrary, results obtained 
from the analysis of the errors were much more indicative 
of a minimum error in predicting an integer, such as the 
age of an individual. A minimum MAE of 1.377 was 
found with RF classification in the first age group, where 
the minimum MSE was likewise only 2.55. These errors 
were intermediate in size in the middle range, with an 
MAE of about 1.5 and an MSE of 3.5. In the last age 
group, the numbers of subjects decreased while the errors 
increased, reaching an MAE of 1.8 and an MSE of 6.4 
with GB classification. The results obtained from the 
classification of the three age classes and the physical 
activity classes were not particularly robust; the accuracy 
for age classification never eclipsed 60%, with the 
highest value in the RF model. In physical activity, 
accuracy reached 60%, again with the RF model yielding 
the best results. 

Lifestyle Index: Machine Learning and NTRA analysis 
According to the three age divisions, the classification of 
the healthy and not healthy groups gives the best results 
in terms of accuracy, always reaching more than 79 with 
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a maximum of 92.5 with RF algorithm for the group of 
the oldest subjects (Table 1). RF always gives the best 
accuracy results higher than 86 and the best sensitivity, 
consistently higher than 90 with a maximum of 96.2. 
Table 2. A-B-C shows the average values of the 11 
NTRA parameters for healthy and not healthy subjects 
divided by age groups. The most significant difference 
can be seen in the fat, muscle, and connective amplitude 
(N) and a big difference in the location (μ) of the 
connective tissue, especially between healthy and not 
healthy people in each age group. 

Discussion 
ML results prove that the CT-scan extracted NTRA 
parameters can classify with a very high accuracy the 
Lifestyle Index using the three age groups. The obtained 
results could be helpful for patient subject to a hip 
prosthesis,31-34 in particular in relation to the prevention 
of the femur fracture risk.35,36 These results do not only 
strengthen the NTRA value to predict significant 
comorbidities like diabetes, hypertension, and cardiac 
diseases,19,24 but also confirm the importance of this 
imaging approach underlying the differences between 
healthy and not healthy subjects from a 
radiodensitometric point of view especially in the muscle 
and connective tissues as specified in Table 2, A,B,C. 
Again, as already underlined in the previous NTRA 
analysis with the AGES database,19,24 the connective 
tissue assumes high importance and shows relevant 
differences between age groups.  NTRA parameters are 
also sensitive to variation in subject age, and muscle 
parameters particularly experience the most significant 
variation compared to fat and connective tissues. 
Regarding physical activity, NTRA parameters are 
strongly sensitive to differences in past and present 
physical activity levels. Muscle parameters again 
experience the most remarkable variation compared to fat 
and connective tissues. The radiodensitometric profiles 
experienced a fewer change in people who reported 
frequent physical activity in their past or present life. 
However, these data were not strengthened by the results 
from ML analyses at the opposite of the Lifestyle Index 

classification. Error rates were meager in age regression, 
mainly for the lower two age groups. This does not mean 
that NTRA parameters are not necessarily sensitive to 
changes in age or the quality of physical activity, which 
would need to be assessed using prospective or 
longitudinal study designs; simply, the present ML 
models were not able to confirm the significant 
differences obtained from statistical analyses in the age 
and physical activity prediction. 
Nevertheless, the univariate statistical analyses show that 
in-particular, fat and connective tissues are sensitive to 
age and self-reported physical activity in the elderly. As 
for the machine learning approach, other types of non-
tree-based algorithms could also have been tested. 
However, given that tree-based algorithms gave excellent 
results in previous NTRA applications and in the 

Table 1. Metrics for lifestyle index classification 

Age 
Group 

Alg. Sens. Spec. Acc. 

66-72 RF 90.3 82.3 86.3 
66-72 GB 84.6 73.7 79.1 
66-72 ADA-B 86.8 74.6 80.7 
73-79 RF 91.5 84.8 88.1 
73-79 GB 87.3 72.9 80.1 
73-79 ADA-B 90.2 81.8 86.0 
80-93 RF 96.2 88.7 92.5 
80-93 GB 91.7 83.5 87.6 
80-93 ADA-B 88.1 78.3 83.2 

  
 
 

Table 2. A. NTRA FAT parameters average for healty (H) and 
not healthy (NH) age groups. 

Age 
Group n_fat μ_fat σ_fat α_fat 

66-72 H 67,41 -117,71 7,59 -2,20 
66-72 nH 63,98 -117,75 8,10 -2,33 
73-79 H 62,96 -117,88 7,83 -2,34 

73-79 nH 60,62 -117,79 8,39 -2,56 
80-93 H 52,63 -118,31 11,07 -3,81 

80-93 nH 59,85 -117,98 8,22 -2,60 
  
 
 Table 2. B. NTRA muscle tissue parameters average for 

healty (H) and not healthy (NH) age groups. 

Age 
Group n_musc μ_musc σ_musc α_musc 

66-72 H 80,41 62,44 8,13 2,59 
66-72 nH 82,65 62,04 8,54 2,77 
73-79 H 77,83 61,68 8,58 2,81 

73-79 nH 77,82 61,36 8,65 2,83 
80-93 H 70,26 60,19 8,16 2,72 

80-93 nH 70,30 60,29 8,93 3,03 
  
 
 Table 2. C. NTRA connective tissue parameters average for 

healty (H) and not healthy (NH) age groups. 
Age 

Group n_conn μ_conn 
 

σ_conn 

66-72 H 40,69 -28,07 26,50 
66-72 nH 43,00 -23,06 25,76 
73-79 H 40,89 -28,37 24,96 

73-79 nH 41,90 -22,73 24,92 
80-93 H 38,72 -17,71 23,37 

80-93 nH 39,64 -26,30 24,13 
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Lifestyle Index prediction, it is likely that the use of other 
algorithms would not have improved these results. This 
notion necessitates future comparative analyses focused 
on the diagnostic value of the NTRA methodology using 
longitudinal data. This could be performed by comparing 
the sensitivity to age and physical activity of NTRA 
parameters with standard CT analyses, such as total, fat, 
and lean muscle cross-sectional areas and/or average 
cross-sectional radiodensity. A possible future evolution 
of the study could be to extend the NTRA technology 
combined with ML not only to sarcopenia in the elderly 
population, but also to motor handicapped individuals: 
the radiodensitometry distribution of fat, lean muscle and 
connective tissue could be predictive of the potential 
physical activity and other pathologies that affect these 
subjects as it was for the AGES population 

List of acronyms 
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