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Abstract 

The majority of cancers are associated to cachexia, a severe form of weight loss mostly accounted 

for by skeletal muscle wasting. Cancer patients are often treated with chemotherapy, whose side 

effects are at times neglected or underestimated. Paradoxically, chemotherapy itself can induce 

muscle wasting with severe, cancer-independent effects on muscle homeostasis. Since muscle 

wasting is a primary marker of poor prognosis for cancer patients and negatively affects their 

quality of life, the systemic consequences of chemotherapy in this context must be fully 

characterized and taken into account. Ten years ago a precursor study in an animal cancer model 

was published in the European Journal of Translation Myology (back then, Basic and Applied 

Myology), highlighting that the side effects of chemotherapy include muscle wasting, possibly 

mediated by NF-κB activation. This paper, entitled «Chemotherapy-induced muscle wasting: 

association with NF-κB and cancer cachexia», is now being reprinted for the inaugural issue of 

the «Ejtm Seminal Paper Series». In this short review we discuss those results in the light of the 

most recent advances in the study of chemotherapy-induced muscle wasting.  
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 Cancer-cachexia is a syndrome characterized by a 

severe decrease of body weight, accounted for by specific 

loss of skeletal muscle and adipose tissues. Cachexia, 

which is distinct from anorexia, is due to a combination 

of reduced food intake and metabolic changes, including 

high energy expenditure, excess catabolism and 

inflammation.1 The latter is linked to the production of 

cytokines by the tumor itself or the immune system of the 

host and plays a major role in the regulation of cancer 

cachexia.2 Pro-inflammatory cytokines, such as IL-6, act 

as double-edged swords since they recruit NK cells to 

attack the tumor cells,3 but also induce a systemic 

metabolic stress response that blocks the effects of anti-

cancer immunotherapy.4 The pivotal role of fat tissue in 

driving the chronic inflammation that triggers cachexia 

was recently  recognized.5,6 Skeletal muscle tissue is 

enriched in various stem cells but not in inflammatory 

cells in cachexia;7 nonetheless, it is a primary target of 

pro-inflammatory cytokines, which induce muscle fiber 

atrophy and stem cell dysregulation and apoptosis.8-10 

Cachexia is associated to a large extent with cancers of 

the pancreas, oesophagus, stomach, lung, liver and 

bowel; this group of malignancies is responsible for 50% 

of all cancer deaths worldwide1 and cachexia is directly 

accountable for the death of about 20% of all cancer 

patients.11 Being associated with poor prognosis and a 

lower quality of life for patients, cachexia remains a 

major challenge in the management of cancer patients to 

date. Muscle wasting in cachexia affects both striated 

muscles,12,13 with important gender differences, likely 

linked to sex hormones.14 Great progress is being made 

in the understanding of the molecular mechanisms 

underlying muscle wasting, with a central role played by 

proteasome-mediated protein degradation.15 As a 

consequence, several treatments are now proposed to 

specifically counteract muscle wasting.16-18 

Chemotherapy remains the elective treatment for 

different cancers since it directly induces the death of 

tumor cells and it helps endogenous host responses 

against cancer.19 However, loss of skeletal muscle during 

chemotherapy is prognostic of poor survival20. 

Consequently controlling muscle wasting especially in 

chemotherapy-treated patientsts is of the greatest 

importance. In spite of the significant effects of 

chemotherapy-induced muscle wasting, few studies have 

investigated this phenomenon up to date. When 

comparing the papers in PubMed containing the MeSH 

cachexia AND «muscle wasting» versus those containing 

the MeSH chemotherapy AND cachexia AND «muscle 

wasting» a striking difference appears: while the number 
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of studies dealing with cachexia is increasing 

exponentially, the number of studies addressing 

chemotherapy effects in this context is far behind and 

adds up to a few per year. In this concise review the 

effects of chemotherapy on muscle wasting are 

discussed. One of the first papers describing 

chemotherapy-induced muscle wasting, by Damrauer et 

al., was first published in Basic and Applied Myology 

(BAM) ten years ago.21 On the ten anniversary of this 

publication, it is published again in this issue of 

European Journal of Translation Myology (EJTM), the 

rationale being that the results of that study are still valid 

and highly significant today; they will be discussed here 

along with more recent studies, which confirmed those 

findings and further characterized the underlying 

molecular mechanisms of chemotherapy-induced muscle 

wasting. 

Primordial studies on chematherapy-induced 

muscle wasting 

In the paper entitled «Chemotherapy-induced muscle 

wasting: association with NF-κB and cancer cachexia» 

the group headed by Denis Guttridge, at the Ohio State 

University, studied the effects of cisplatin, a common 

anti-cancer therapeutic agent, in a cancer cachexia animal 

model. The latter consisted in mice bearing a 

subcutaneously grafted colon carcinoma, the C26 

tumor.21 Guttridge and co-workers found that «although 

cisplatin is able to reduce tumor burden as expected, 

muscle wasting in mice nevertheless persists. Strikingly, 

cisplatin alone was seen to regulate muscle atrophy, 

which was independent of the commonly implicated 

ubiquitin proteasome system» (Damrauer et al.).21 It is 

worth noting that then another group had reported 

opposite findings, i.e. that chemotherapy inhibits protein 

breakdown and promotes protein synthesis24,25, however, 

both studies showed that cisplatin induced body weight 

loss and muscle wasting in healthy mice, suggesting that 

chemotherapy does indeed induce muscle loss. Very 

likely, cisplatin triggers multiple responses in muscle 

tissue, which ultimately lead to muscle fiber atrophy 

while the role of protein ubiquitination and proteasome-

mediated degradation remains controversial (see also 

below). Clearly these studies were relevant in addressing 

cancer cachexia in the presence of chemotherapy, which 

contributes to mimicking clinical settings better. 

Mechanisms underlying chemiotherapy-induced 

muscle wasting 

As mentioned above, Guttridge’s laboratory did not 

suggest a role for proteasome-mediated protein 

degradation during chemotherapy, while Attaix’s group 

found that chemotherapy reduced proteasome-dependent 

protein degradation, both in the absence or presence of a 

tumor (see Damrauer et al., this issue).21 A possible 

explanation is that the first group did not directly measure 

proteasome activity, but rather Murf1 expression. Murf1 

is a muscle specific ubiquitin ligase which leads proteins 

to the proteasome, but it is not unique in its role and it 

could be redundant with other ubiquitin-ligases, such as 

Atrogin1. In addition Murf1 provides an indirect estimate 

of protein degradation. 

Interestingly, although, cisplatin induces Nf-KB 

expression, the latter is increased in muscle in the 

presence of a tumor and NF-kB activity is sufficient to 

trigger muscle wasting. Taken together these findings 

provide a possible mechanism whereby chemotherapy 

induces muscle wasting.26 In addition, the fact that NF-

kB targets not only muscle fibers but also muscle stem 

cells,27 suggests that chemotherapy may reach multiple 

targets, in addition to muscle fiber protein metabolism. 

The intriguing findings that NF-kB is involved in both 

tumor- and chemotherapy-induced muscle wasting 

suggested that common pathways are activated. This has 

been recently confirmed by the group of Andrea Bonetto, 

at Indiana University.28 By using a comprehensive 

approach based on liquid chromatography followed by 

mass spectrometry they compared the skeletal muscle 

proteome in C26-tumor bearing and chemotherapy 

treated mice (chemotherapy consisting of 5-fluorouracil 

(5-FU), Leucovorin (LV) and CPT-11, a combination 

also known as Folfiri). Authors found that cancer and 

chemotherapy promote the down-regulation of 235 and 

345 muscle proteins, respectively, the vast majority of 

which were modulated in common.28 Mitochondrial 

dysfunction, TCA cycle, fatty acid metabolism, and Ca2+ 

signaling were among the altered pathways detected.28 

Further insights about muscle mitochondria 

dysregulation following chemotherapy came from the 

same group which proved that mitochondrial depletion is 

MAPK-dependent.29 This is consistent with previous 

findings that muscle wasting is associated with up-

regulation of ERK1/2 and p38 MAPKs.30 Taken together 

these studies provide a rationale for using treatments to 

both counteract tumor growth and to reduce the side 

effects of chemotherapy.  

Countermeasures: would exercise be effective 

against chemotherapy side effects? 

In an elegant, recent study Bonetto and co-workers 

proposed the inhibition of the activin receptor 2B 

(ACVR2B) signaling to counteract both cancer- and 

chemotherapy-induced muscle wasting, by using 

ACVR2B/Fc, a soluble ACVR2B fusion protein and 

inhibitor of receptor downstream signaling.31 

ACVR2B/Fc was effective not only in counteracting   

Folfiri-induced skeletal muscle loss, but also the Folfiri 

negative effects on bone mass.31 Beside pharmacological 

treatments, many studies including ours have established 

that exercise counteracts cachexia and sarcopenia.32-35 

The mechanisms underlying the beneficial effects of 

exercise against cachexia include autophagic flux 

regulation,36 the reduction of Pax7 expression in satellite 

cells,37 and the release of Hsp60 from muscle cells.38 This 

topic was recently reviewed,39-41 and it will be not further 

discussed here.  
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Given that cancer and chemotherapy activate common 

pathways in muscle and exercise has proven effective 

against cancer-induced muscle wasting, several research 

groups have been prompted to study whether physical 

activity could have beneficial effects in the presence of 

chemotherapy as well. Indeed, several epidemiological 

studies and clinical trials indeed suggest that both 

resistance and endurance exercise should be an integral 

part of supportive care for cancer patients undergoing 

chemotherapy.42-45 

The European Journal of Translation Myology 

Seminal Papers Series 

This mini-review represents an update on the most 

relevant research on chemotherapy-induced muscle 

wasting. One of the first studies on this topic was the 

paper by Damrauer et al. in the Cahcexia 2008 special 

issue of Basic and Applied Myology (now European 

Journal of Translation Myology).22 Ten years later, this 

paper was selected for the inaugural issue of the Seminal 

Papers Series of the European Journal of Translation 

Myology.21 This series provides an opportunity to 

disseminate to a larger audience seminal papers, 

previously published in BAM or EJTM, that have paved 

the way for breakthroughs in translational myology and 

medicine. The European Journal of Translation Myology 

has published many papers related to muscle wasting 

linked to mobility disorders,46-52 to muscle atrophy in 

sarcopenia and disease states,53-55 and to physical 

exercise.33,56 EJTM is now entering in all major databases 

for scientific journals and its impact factor will be 

released soon. The journal is expanding its authorship, 

readership, editorial board and enhancing its relevance. 

Originally devoted to biology, physiology, diagnostic, 

and the rehabilitation of skeletal muscle tissue, the 

journal is now moving forward to cover additional fields 

in myology, thus becoming of a broader medical and 

clinical interest. We believe that reprinting of specific 

historical  BAM or EJTM papers in the «EJTM Seminal 

Papers Series» (and publishing of up-dated related 

reviews) will provide the certain visibility that those 

papers deserve. 
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