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Abstract  

We collected biosignals from 63 participants and extracted the features corresponding to each level 

of exerted muscle force. Data were classified into typical and atypical patterns. Data analysis was 

performed using the Linear Latent Curve Model (LCM) and the Conditional Linear LCM. The 

typical patterns demonstrated a high degree of fit. Factors, such as ankle circumference and muscle 

mass, influenced the model intercept. A larger ankle circumference indicated attenuation of signal 

transmission from the tendon to the skin surface, leading to lower biosignal values.  These results 

indicate that biosignals from the tendons near the ankle can be captured using piezoelectric film 

sensors. There are studies that define biosignals originating from tendons as mechanotendography. 

It has been demonstrated that the relationship between biosignals originating from tendons and the 

exerted muscle force can be explained linearly. Insights from this study may facilitate 

individualized approaches in the fields of motion control and rehabilitation. Physiological studies to 

elucidate the mechanisms underlying biosignal generation are necessary. 

  

Key words: lower limb muscle activity, tendon biosignals, longitudinal data, latent curve model, 

piezoelectric film sensor. 

 

 

Introduction  

Human muscle activity quantification is a vital component in biomedical engineering research.1,2 

In motion control, lower limb muscle activity yields information on timing, patterns, and 



coordination, which illumines movement disorder mechanisms.3,4 The evaluation of changes in 

muscle activity in cases of motor control abnormalities or movement disorders elucidates the 

mechanisms underlying these disorders.5,6 In rehabilitation, this quantification provides insights into 

the overall activity and response speeds, facilitating the measurement of rehabilitation progress and 

contributing to plan optimization.7,8 However, although electromyography (EMG) is widely 

employed for human muscle activity quantification, it necessitates placement of electrodes on the 

skin surface, which makes it unsuitable for long-term or intense physical activity measurements. To 

overcome these limitations, Isezaki et al. developed a sock-type wearable electromyograph.9 

Nevertheless, issues such as noise from sock sizing and sweatinduced interference between the 

electrodes and skin still require mitigation. 

In this study, we shifted the focus to the tendons near the ankle joint and the biosignals they emit to 

circumvent the shortcomings of EMG signals. Tendons linked to muscles are known to emit signals 

associated with mechanical activities, such as mechanomyographic signals, and physiological 

tremors linked to the nervous system, both of which are useful for muscle activity quantification.10,11 

The ankle joint, which is a convergence point for tendons, such as the Achilles joint, and has 

minimal interference from fat and muscle, is an ideal site for biosignal acquisition. Consequently, 

we hypothesized that biosignals from the tendons near the ankle would be effective for quantifying 

lower limb muscle activity. Preliminary experiments using high-sensitivity piezoelectric film 

sensors placed on the Achilles tendon during isometric exercises indicated a correlation between the 

exercise intensity and sensor amplitude. Attempting to directly identify the mechanism behind these 

results would necessitate medical and physiological experimentation, which would involve 

considerable costs and risks. Hence, in this study, we posit a hypothesis that biosignals related to 

muscle activity originate from tendons near the ankle joint. Our aim is to indirectly corroborate this 

hypothesis through data science methods, allowing its plausibility to emerge. 

We conducted data acquisition experiments and analyzed data from 63 participants. A data 

acquisition system equipped with high-sensitivity piezoelectric film sensors was used to detect the 

biosignals at the ankle joint. The participants performed isometric exercises at four levels of muscle 

force exertion. The features of the piezoelectric film sensor that were correlated with the exerted 

muscle force were identified from the collected data. Longitudinal datasets, each consisting of four 

data points representing different exerted forces, were compiled for all the participants. Statistical 

models were fitted to evaluate the relationship between the identified features and exerted muscle 

force. In addition, we investigated the factors contributing to individual variations and their 

underlying mechanisms. 

 

 



Materials and Methods 

Experimental methods 

Participants 

A total of 63 healthy individuals aged 21– 58 years (31 males and 32 females) participated in the 

experiment. Prior to the experiment, the physical measurements of the participants (age, height, 

weight, body fat percentage, skeletal muscle mass, ankle circumference, and average grip strength) 

were recorded. The body fat percentage and skeletal muscle mass were measured using a 

bioelectrical impedance analysis scale (InBody S10; InBody, Tokyo, Japan). Ankle circumference 

was measured in the upper ankle. The average grip strength was calculated as the mean of four 

measurements (two from each hand). 

 

Data acquisition system 

We developed a system for acquiring biometric signals near the ankle joint. The system uses a 

biodegradable piezoelectric film sensor (Picoleaf®, Murata Manufacturing Co., Ltd.)12 made of 

polylactic acid and is characterized by nonpyroelectric properties, making it less susceptible to body 

temperature. This feature allows for the generation of electric charges from material strain, enabling 

more accurate measurements. Furthermore, the sensor, owing to its high sensitivity and flexibility, 

could detect minute skin displacements and vibrational changes caused by tendon movements, 

regardless of body contours, making it valuable for biological applications. The system was 

designed such that a sensor was positioned on the side of the Achilles tendon.13 The sampling 

frequency of the sensor was set to 1000 Hz.  

 

Exercise protocol 

The potential noise sources in this experiment are defined as follows: i) Experimental noise (noise 

that may occur during the experiment, such as body movements, system positioning, and 

participants not performing the exercises as intended); ii) Biological noise (noise that may arise 

owing to day-to-day variations in the physical and neurological properties of the participants). 

The experimental protocol was designed such that biometric signals were obtained from ankle joints 

with minimal experimental and biological noise. A Cybex isokinetic dynamometer (Cybex 

NORM®, HUMAC, CA, USA) was used14 to suppress experimental noise caused by body 

movements. The participants were seated in the dynanometer with the knee rotation axis (the lateral 

epicondyle of the femur) aligned with the machine axis. The knee angle was fixed at 90°, and the 

shin pad was secured just above the external malleolus. The ankle angle was fixed at 90°. The right 

foot was used for the measurements, regardless of the participant’s dominant foot or hand, and was 



secured accordingly. The dynanometer was calibrated according to the manufacturer’s 

recommendations before clinical trials. The experiment was structured into three phases. The warm-

up phase was initially conducted with two objectives, to prevent physical abnormalities in 

participants during the test and to homogenize any heterogeneous physical and neurological 

properties, thereby reducing biological noise. In operation training phase, the researcher provided 

instructions to the participants. To ensure stable data acquisition, the participants were first secured 

to a Cybex machine and provided ample practice time (approximately 1 min) to become familiar 

with the operation. This was done to reduce the experimental noise that could arise from 

participants’ failure to perform the exercises as intended. Data acquisition phase was placed after 

warm-up and operational training. Let i (i = 1,...,4) denote the exertion force number, j  (j = 1,...,63) 

the participant ID, and pij  (pij = 25,50,75,100) the exertion force expressed as a percentage of each 

participant’s MVC. Isometric plantar flexion movements of the ankle were performed, and data 

were acquired in the following order: MVC (100% MVC), 25% MVC load (25% MVC), 50% MVC 

load (50% MVC), and 75% MVC load (75% MVC). Data acquisition was conducted in three sets, 

each lasting for 5s. The dynamometer-measured torque values were displayed in real time on a 

monitor used by the participants to control the exertion force. The participants were instructed to 

gradually increase their exertion force over 10s with the goal of reaching the specified value at the 

10-s mark. The experimenter also monitored and confirmed that the exerted force had reached a 

designated value before the measurement. A 20-s rest period was provided between each 

measurement set. The data acquisition system and procedure are illustrated in Figure 1. 

 

Data preprocessing 

Feature extraction 

The amplitude of the sensor signal and the exerted muscle strength exhibited a directly proportional 

relationship. In fields such as acoustics and vibration, the magnitude of the amplitude is quantified 

using the root-mean-square (RMS) value[15]. We chose RMS as the feature for quantifying the 

amplitude. Let t (1 ≤ t ≤ Tij) denote the time at which the raw data from the piezoelectric film sensor 

are acquired. If sijt represents the value of the piezoelectric film sensor signal at time t and RMSij is 

the RMS of the signal, the RMS can be defined by Equation (1). 

 
Furthermore, in the fields of acoustics and vibration, the values are often expressed in decibels 

relative to a standard reference value[16]. A similar approach was adopted in the present study. The 



reference value RMS0 was defined as the minimum RMS value obtained from the steady-state data 

of all participants, as shown in Equation (2). 

 
The RMS0 value obtained from the experimental data was 2.44 × 10−5. Therefore, the magnitude of 

the biosignal, expressed in dB, Vij was calculated using Equation (3): 

 
 

 

Clustering 

After preprocessing, the data were structured into longitudinal datasets with each participant j 

having a biosignal Vij corresponding to the exerted muscle force pij. The difference in Vij from the 

muscle force i to i + 1 was defined as ∆Vkj (k = 1,...,3). Curve patterns were classified based on ∆Vkj 

using the following procedure: i) Using density-based spatial clustering of applications with noise 

(DBSCAN), the patterns were classified into typical and atypical curve patterns based on the 

differences ∆V1j (between 25% MVC and 50% MVC) and ∆V2j (between 50% MVC and 75% 

MVC);17 ii) After excluding typical curve patterns, the remaining curve patterns were reclassified 

using DBSCAN based on ∆V1j and ∆V2j, and it was manually determined which belong to typical 

curve patterns and which do not; iii) Typical curve patterns and others were classified using 

DBSCAN based on the difference ∆V3j (between 75% MVC and 100% MVC). 

The classification based on ∆V1j and ∆V2j was separated from that based on ∆V3j because the former 

was part of an experiment in which participants controlled their exerted muscle force, whereas the 

latter was used for the maximum torque value assessment at 100% MVC. Thus, they potentially 

involved different types of noise. Figure 2 illustrates the clustering procedure and types of atypical 

patterns. 

 

Data analysis methods 

Structural equation modeling (SEM) is a versatile theoretical framework extensively used in various 

research fields, such as social sciences and medicine, to analyze causal models involving latent and 

observed variables.18 The fundamental procedure in SEM involves creating models based on 

hypotheses and then selecting the optimal model by comparing the information criteria and fit 

indices, thereby identifying the true hypothesis. In this study, we evaluated four measures: the 

adjusted goodness of fit index (AGFI), comparative fit index (CFI), RMSE of approximation 

(RMSEA), and standardized root mean square residual (SRMR). AGFI and CFI values greater than 



0.9 generally indicate a good model fit.19,20 Similarly, RMSEA and SRMR values less than 0.08 are 

considered good, whereas values greater than 0.1 indicate a poor fit.21,22 These indices define the fit 

differently; therefore, we report all of them here. 

We based our analysis on the Latent Curve Model (LCM), which is well suited for longitudinal 

data.23 The LCM is a statistical model designed to model longitudinal phenomena. It can estimate 

the trajectory of intra-individual changes over time and the inter-individual differences in these 

changes. Thus, it estimates parameters associated with time-variant general group tendencies and 

estimates the extent to which these parameters vary among individuals within a population 

simultaneously. 

 

 

In this model, β0j represents the random intercept, which, in our study, denotes the population 

mean of the biosignal magnitude for the participant j at 25% MVC exerted muscle strength pij. β1j 

is the random slope indicating the average change in the dependent variable Vij when the exerted 

muscle strength pij increases by 1%. The term rij is the residual error that represents the deviation 

of the measured value Vij for each exerted muscle strength pij of participant j from β0j + β1jpij. 

Equation (5) indicates that the deviation rij follows a normal distribution with zero mean and 

variance σ2. This model includes various assumptions when approached using SEM. For example, 

explanatory variables for the random intercept denoted as x(l)0j and those for the random slope 

denoted as x(m)1j, with l and m representing the number of explanatory variables, can be added to 

equations (6) and (7) to transform them into equations (10) and (11), respectively, resulting in a 

conditional LCM. Equations (10) and (11) allows us to focus on explaining interindividual 

differences [24, 25]. 

 
 



Results 

Linear LCM 

Path diagram is presented in Figure 3. Equalvariance constraints are applied to the variances of V1j, 

V2j, and V3j, whereas V4j is treated separately. This decision is based on the different types of noise 

involved, as discussed in Section II-B.2.  

Table 1 displays the fit indices and the parameters using only typical pattern data. Overall, these 

indices indicate a good fit. The CFI and AGFI reflect the overall fit of the proposed model to the 

observed data, while the RMSEA and SRMR highlight the discrepancies, uncertainties, and error 

rates between the actual observations and predictions. The results were favorable based on both sets 

of indices.  

Additionally, the estimated average intercept γ00 was 53.392, and the average slope γ10 was 0.083. 

The 95% confidence interval for the slope was positive, indicating that the biosignal Vij tended to 

increase monotonically on average, as the exerted muscle strength pij increased. This monotonic 

increase was quantified in increments of 0.083 for each 1% increase in pij. Moreover, the variance in 

the slope τ11 was 0.001. The slope distribution was assumed to follow a normal distribution, as 

indicated in Equation (5), suggesting that the biosignal Vij increased monotonically with the exerted 

muscle strength pij, regardless of interindividual differences. 

 

Conditional linear LCM 

A conditional linear LCM was constructed using participant-specific information to estimate 

intercepts and slopes. Participant-specific information was selected after removing multicollinearity 

through a stepwise variable increase and decrease method based on the Akaike information criterion.  

Although the SRMR value was slightly high (0.092), the AGFI, CFI, and RMSEA indices indicated 

a good fit. This implies that although the model fit the data well, there is potential for improvement 

through structural adjustments or consideration of additional variables. Overall, the model 

demonstrated high reliability. The estimated value of the explained variance, PVE(τ00) was 0.421, 

which indicates that the explanatory variables for the intercept could explain 42.1% of the individual 

variance. Therefore, the selected explanatory variables contributed significantly to the estimation of 

the biosignal value at 25% MVC. 

Table 2 lists the explanatory variables selected for the intercepts and slopes. The selected 

explanatory variables for the intercept were the sensor value at steady state (0% MVC), maximum 

torque value at 100% MVC, ankle circumference, and average grip strength. All the variables 

contributed significantly to the intercept estimation when a two-tailed t-test is conducted at the 5% 

significance level. The most influential variable was the maximum torque value at 100% MVC, with 

a regression coefficient of 0.063, indicating that the intercept fluctuated by ±2.64 based on this 



variable. The other variables also significantly influenced the intercept: the sensor value at the 

steady state (±2.27), ankle circumference (±1.78), and average grip strength (±2.03). However, none 

of the variables significantly affected the slope. 

 

Comparison of typical and atypical patterns 

Figure 4 presents a box plot that illustrates the distribution of the physical and experimental data 

for all participants and the information of the participants classified as having atypical patterns. The 

box represents the interquartile range of the dataset and the whiskers extend to cover the remainder 

of the distribution. We denote the first quartile by Q1, the third quartile by Q3, and the interquartile 

range by IQR = Q3 − Q1. The lower and upper whiskers extend to the minimum value within Q1 − 

(1.5 × IQR) and maximum value within Q3 + (1.5 × IQR), respectively. Data points outside these 

ranges were plotted as outliers. The overall distribution of the participants did not show significant 

differences in terms of age between males and females. 

The participant with atypical pattern A, showing a monotonic decrease, was a male with short 

stature and a lean body type. Participants with atypical pattern B, showing a larger increase in the 

biosignal value relative to the exerted muscle strength, included two males and one female. One of 

the males had a higher height, weight, body fat percentage, and maximum torque at 100% MVC. 

Participants with atypical pattern C, in which the biosignal values tended to decrease during 100% 

MVC, included two males and four females. One male patient had an ankle circumference notably 

larger than his physique. Among the females, one had a larger ankle circumference, higher BMI, and 

body fat percentage. The participants, regardless of gender, exhibited high maximum torque values 

at 100% MVC. Additionally, four of the five participants with pattern C had notable experimental 

notes, including changes in foot fixation settings or unstable torque values during the experiment. 

Discussion and implications 

Factors contributing to inter-individual differences 

When examining the explanatory variables for the intercept, it was observed that a larger ankle 

circumference resulted in a lower intercept value. This outcome aligns with the hypothesis that 

biosignals generated by tendons attenuate before reaching the skin surface and that this attenuation 

is proportional to the distance from the tendon to the skin surface. This hypothesis is consistent with 

the finding that higher steady-state sensor values lead to higher intercepts. 

Furthermore, higher maximum torque values at 100% MVC were associated with higher intercept 

values. Generally, individuals with higher maximum torque values are more likely to have greater 

muscle mass. At 25% MVC, individuals with a greater muscle mass can mobilize more muscles. 

Consequently, more muscle activation leads to higher biosignal quantities, which explains why 



individuals with higher maximum torque values at 100% MVC had higher intercept values. This 

hypothesis is also consistent with the finding that higher average grip strength leads to higher 

intercept values.  

 

Factors contributing to atypical patterns 

Further analysis was conducted for participants with atypical pattern C, who showed a decreasing 

trend, especially at p4j. Among the five participants identified as exhibiting pattern C, participants 

with IDs 109 and 114 displayed exceptionally high maximum torque values at 100% MVC. Such 

high values indicate that the participants used synergistic muscles (such as quadriceps) in addition to 

the primary muscles during the dynamometer test. In this scenario, the combined torque values were 

recorded as the maximum torque at 100% MVC. Consequently, the torque settings for p1j to p3j were 

set to be higher than the actual abilities of the participants, resulting in higher values of V1j to V3j. 

However, the activation of synergistic muscles can reduce the activity of the primary muscles.26 If 

V4j represents the activity of the primary muscles, it exhibits lower values. The average grip strength 

of these two participants with IDs 109 and 114 supports the hypothesis that the maximum torque 

values at 100% MVC include the force from the synergistic muscles. Furthermore, changes in the 

fixation methods during an experiment can alter the contribution of synergistic muscles.27 The 

control of the primary muscles also affects the ratio of the primary and synergistic muscle 

contributions. These phenomena were observed in the experimental notes of four of the five 

participants, suggesting that the high maximum torque values at 100% MVC included forces from 

the synergistic muscles. Thus, atypical pattern C can be attributed to experimental noise owing to 

the unintended use of synergistic muscles during the 100% MVC tests. This also implies the validity 

of excluding pattern C from the model.  

 

Relationship between biosignals and mechanotendography 

The analysis revealed that the slopes, including the 95% confidence intervals, are positive for both 

the latent growth model and the conditional latent growth model. Specifically, the positivity of the 

slopes in the conditional latent growth model suggests that, for both genders, the biosignal Vij 

increases monotonically on average with the increase in muscle strength pij. This study assumes the 

presence of biosignals originating from tendons, which Schaefer et al. have defined and reported as 

mechanotendography.28,29 Although they assumed biosignals akin to acoustic signals, they 

considered lower frequencies and used the same piezoelectric sensors as we did. The biosignals 

dealt with in this study are likely related to mechanotendography as studied by Schaefer et al. To 

date, no study has verified the trends of mechanotendography under multi-level isometric 

contraction loads. This study suggests that mechanotendography can contribute not only to the 



detection of muscle activity levels but also to their quantification. Future research needs to 

investigate the relationship with the mechanotendography defined by Schaefer et al. 

 

Conclusions  

In this study, the biosignals originating from the tendons near the ankle joint were used for limb 

muscle activity quantification. We conducted data acquisition experiments and analyses on 63 

participants to capture biosignals from the ankle joint and extract features corresponding to the 

exerted muscle forces. For typical patterns, modeling was performed using a linear LCM and a 

conditional linear LCM. The linear LCM for typical patterns showed high potential for linearly 

explaining the relationship between the exerted muscle forces and biosignals. Conditional linear 

LCM revealed that physical information, such as ankle circumference and average grip strength, 

influenced the intercept of the model. 

This study demonstrated that the relationship between the biosignals and exerted muscle forces can 

be explained by a simple linear structure, which is advantageous for estimating exerted muscle 

forces using biosignals. Additionally, participant-specific physical information can be used to adjust 

for individual biases. These results increase the feasibility of realizing a generalized model for 

estimating exerted lower limb muscle forces.  

We plan to analyze the relationship between the EMG signals and biosignals captured in this study 

to further demonstrate the efficacy of biosignals. Further experiments will be conducted under 

different conditions to validate the applicability of this method to other muscles and areas of 

motion. Experiments to elucidate the mechanisms underlying biosignal generation should also be 

conducted from a physiological perspective. 

  

 List of abbreviations 

EMG: Electromyography  

RMS: Root mean square 

MVC: Maximal voluntary contraction 

SEM: Structural equation modeling 

LCM: Latent curve model 
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RMSEA: Root mean square error of approximation 

SRMR: Standardized root mean square residual 

PVE: Proportions of variance explained 



IQR: Interquartile range 

 

 

Correspondence: Yutaka Kano, Osaka University, 1-3, Machikaneyama, Toyonaka, Osaka, Japan. 

E-mail: kano.yutaka.es@osaka-u.ac.jp 

 

Tatsuhiko Matsumoto 

ORCID: 0009-0003-4423-9718 

E-mail: tatsuhiko.matsumoto@murata.com 

 

 

Conflict of interest: the authors declare that they have no financial or non-financial conflicts of 

interest related to the content of this manuscript. 

 

Funding: This study did not receive any funding in any form.  

 

Ethics approval and consent to participate: the experimental protocol was performed according 

to the principles of the Declaration of Helsinki. Informed consent was obtained from all the 

participants prior to the experiment, and the study was approved by the Ethics Committee of 

Shikoku Medical School (Approval Number: R05-08-002). 

 

Consent for publication: not applicable.  

 

Availability of data and material: the dataset used and/or analysed during the current study are 

available from the corresponding author on reasonable request. 

 

mailto:kano.yutaka.es@osaka-u.ac.jp
mailto:tatsuhiko.matsumoto@murata.com


Acknowledgments: We extend our deepest gratitude to Yuichi Motohisa and Nozomi Matsunaga of 

the Nagai Cardiovascular Internal Medicine Clinic and Chiharu Fujisawa from Shikoku Medical 

School for their invaluable cooperation and support. The expertise and dedication of these 

individuals were instrumental in the successful completion of our experiments and fundamental to 

achieving the profound insights gained from this research. We would also like to express our 

appreciation to Atsushi Naito, Naoki Kawara, Yutaka Takamaru, and Risako Yamashita from Murata 

Manufacturing Co., Ltd. for their assistance and expertise, which contributed significantly to our 

research. We would like to thank Editage (www.editage.jp) for the English language editing.  

 

 

References  

1. Powell KE, Paluch AE, Blair SN. Physical activity for health: What kind? how much? how 

intense? on top of what? Ann Rev Public Health 2011;32:349-365.   

2. Howard RM, Conway R, Harrison AJ. A survey of sensor devices: use in sports 

biomechanics. Sports Biomechanics 2016;15:450-461. 

3. Walter JP, Kinney AL, Banks SA, et al. Muscle synergies may improve optimization 

prediction of knee contact forces during walking. J Biomech Engin 2014;136:021031.   

4. Hansen C, Teulier C, Micallef JP, et al. Lower limb muscle activity during first and second 

tennis serves: a comparison of three surface electromyography normalisation methods. Sports 

Biomech 2023;1-12.  

5. Schmitz A, Silder A, Heiderscheit B, et al. Differences in lower-extremity muscular 

activation during walking between healthy older and young adults. J Electromyography Kinesiol 

2009;19:1085-91.   

6. Arendt-Nielsen L, Graven-Nielsen T, Svarrer H, Svensson P. Influence of low back pain on 

muscle activity and coordination during gait: A clinical and experimental study. Pain 1996;64:231-

240.   

7. Farthing JP, Chilibeck PD. The effects of eccentric and concentric training at different 

velocities on muscle hypertrophy. Eur J Appl Physiol 2003;89:578-86.   

8. Ekstrom RA, Donatelli RA, Carp KC. Electromyographic analysis of core trunk, hip, and 

thigh muscles during rehabilitation exercises. J Orthopaedic Sports Physical Ther 2007;37:754-62.   



9. Isezaki T, Kadone H, Niijima A, et al. Sock-type wearable sensor for estimating lower leg 

muscle activity using distal EMG signals. Sensors 2019;19:1954.   

10. Stokes MJ, Dalton PA. Acoustic myography for investigating human skeletal muscle 

fatigue. J Appl Physiol 1991;71:1422-6. 

11. Koster B, Lauk M, Timmer J, et al. Central mechanisms in human enhanced physiological 

tremor. Neuroscience Letters 1998;241:135-8.   

12. Ando M, Kawamura H, Kitada H, et al. Pressure-sensitive touch panel based on 

piezoelectric poly (l-lactic acid) film. Japanese J Appl Physics 2013;52:09KD17.   

13. Jomyo S, Furui A, Matsumoto T, et al. A wearable finger-tapping motion recognition 

system using biodegradable piezoelectric film sensors. In: 2021 43rd Annual International 

Conference of IEEE Engineering in Medicine Biology Society (EMBC). IEEE, 2021.   

14. Menegaldo LL, de Oliveira LF. Effect of muscle model parameter scaling for isometric 

plantar flexion torque prediction. J Biomech 2009;42:2597-2601.   

15. Immovilli F, Bianchini C, Cocconcelli M, et al. Bearing fault model for induction motor 

with externally induced vibration. IEEE Transactions on Industrial Electronics 2012;60:3408-3418.   

16. Tsypkin M. Induction motor condition monitoring: Vibration analysis technique-a twice 

line frequency component as a diagnostic tool. In: 2013 International Electric Machines Drives 

Conference, 2013. p. 117-124.   

17. Ester M, Kriegel HP, Sander J, Xu X. A density-based algorithm for discovering clusters in 

large spatial databases with noise. In: KDD, 1996. p. 226-231.   

18. Hox JJ, Bechger TM. An introduction to structural equation modeling. In: Partial Least 

Squares Structural Equation Modeling (PLS-SEM) Using R: A Workbook, 2021. p. 1-29.   

19. Hoelter JW. The analysis of covariance structures: Goodness-of-fit indices. Sociological 

Methods Research 1983;11:325-344.   

20. Cole DA. Utility of confirmatory factor analysis in test validation research. J Consulting 

Clin Psychol 1987;55:584.   

21. Steiger JH. Understanding the limitations of global fit assessment in structural equation 

modeling. Personal Individual Diff 2007;42:893-8. 



22. Iacobucci D. Structural equations modeling: Fit indices, sample size, and advanced topics. 

J Consumer Psychol 2010;20:90-8.   

23. McArdle JJ, Grimm KJ. Five steps in latent curve and latent change score modeling with 

longitudinal data. In: Longitudinal Research with Latent Variables, 2010. p. 245-273.   

24. Bollen KA, Curran PJ. Latent curve models: a structural equation perspective. Wiley and 

Sons, 2006.   

25. Lance CE, Vandenberg RJ, Self RM. Latent growth models of individual change: The case 

of newcomer adjustment. Organizat Behav Human Decision Processes 2000;83:107-40.   

26. Kubota K, Yokoyama M, Hanawa MT, et al. Muscle co-activation in the elderly contributes 

to control of hip and knee joint torque and endpoint force. Sci Rep 2023;13:7139.   

27. Billot M, Simoneau EM, Ballay Y, et al. How the ankle joint angle alters the antagonist and 

agonist torques during maximal efforts in dorsi-and plantar flexion. Scandinavian J Med Sci Sports 

2011;21:e273-81.   

28. Schaefer LV, Bittmann FN. Mechanotendography: description and evaluation of a novel 

method for investigating the physiological mechanical oscillations of tendons using a piezo-based 

measurement system. Eur J f Translat Myol 2021;31:1.   

29. Schaefer LV, Bittmann FN. Two forms of isometric muscle function: Interpersonal motor 

task supports a distinction between a holding and a pushing isometric muscle action. BioRxiv 

2020;2020:08. 

  



 

Figure 1. Illustration of the biometric signal acquisition system, device 

placement on the body and procedure. 

 

 



 
Figure 2. Clustering procedure and illustration of atypical patterns. 

 

 

 
Figure 3. Path diagram for the linear LCM and conditional linear LCM. 

 

  



 
Figure 4. Box plot of participant’s physical information and participants information 

for atypical patterns. 

 

  



 

Table 1. Parameters and Fit Indices of Linear LCM and Conditional Linear LCM. 

 Linear LCM Conditional linear LCM. 

Model 

parameter 

Estimate Standard 

 error 

95%  

confidence 

intervals 

Estimate Standard 

error 

95%  

confidence  

intervals 

γ00 53.392 0.501 [52.400, 54.383] 41.784 5.991 [29.921, 53.646] 

γ10 0.083 0.005 [0.0073, 0.0092] 0.083 0.005 [0.073, 0.092] 

τ00 11.079 - - 6.414 - - 

τ10 =τ01 -0.041 - - -0.037 - - 

τ11 0.001 - - 0.001 - - 

σ21-3 1.377 - - 1.386 - - 

σ21-3 2.125 - - 2.069 - - 

PVE(τ00) - - - 0.421 - - 

 Fit indices for the linear LCM Fit indices for the linear LCM 

χ2 df p-

valu

e 

AG

FI 

CF

I 

RMS

EA 

SR

MR 

χ2 df p-

valu

e 

AG

FI 

CF

I 

RMS

EA 

SR

MR 

8.3

9 

7 0.29

8 

0.9

99 

0.9

93 

0.061 0.06

8 

27.

65 

1

9 

0.09

0 

0.9

98 

0.9

63 

0.052 0.09

2 

 

 

Table 2. Explanatory variables selected for the intercept and slope of the conditional LCM. 

 Explanation 

variable 

for intercept 

Intercept Variance Estimate Standard 

error 

p-value 

x(l)0j Sensor value at 

steady [dB] 

49.577 13.427 0.317 0.089 0.000 

Torque value at 

MVC [N·m] 

53.660 458.074 0.063 0.019 0.001 

Ankle 

circumference [cm] 

21.586 3.294 -0.501 0.197 0.011 



Average grip 

strength [kg] 

33.610 108.262 0.100 0.040 0.013 

x(l)1j All variables non-significant based on variable selection 
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