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Human muscle activity quantification is a vital com-
ponent in biomedical engineering research.1,2 In mo-

tion control, lower limb muscle activity yields information 
on timing, patterns, and coordination, which illumines 
movement disorder mechanisms.3,4 The evaluation of 
changes in muscle activity in cases of motor control ab-
normalities or movement disorders elucidates the mech-
anisms underlying these disorders.5,6 In rehabilitation, this 
quantification provides insights into the overall activity 
and response speeds, facilitating the measurement of re-
habilitation progress and contributing to plan optimiza-
tion.7,8 However, although electromyography (EMG) is 
widely employed for human muscle activity quantifica-
tion, it necessitates placement of electrodes on the skin 
surface, which makes it unsuitable for long-term or in-
tense physical activity measurements. To overcome these 
limitations, Isezaki et al. developed a sock-type wearable 
electromyograph.9 Nevertheless, issues such as noise from 
sock sizing and sweatinduced interference between the 
electrodes and skin still require mitigation. 
In this study, we shifted the focus to the tendons near the 
ankle joint and the biosignals they emit to circumvent the 
shortcomings of EMG signals. Tendons linked to muscles 

are known to emit signals associated with mechanical ac-
tivities, such as mechanomyographic signals, and physio-
logical tremors linked to the nervous system, both of 
which are useful for muscle activity quantification.10,11 The 
ankle joint, which is a convergence point for tendons, such 
as the Achilles joint, and has minimal interference from 
fat and muscle, is an ideal site for biosignal acquisition. 
Consequently, we hypothesized that biosignals from the 
tendons near the ankle would be effective for quantifying 
lower limb muscle activity. Preliminary experiments using 
high-sensitivity piezoelectric film sensors placed on the 
Achilles tendon during isometric exercises indicated a cor-
relation between the exercise intensity and sensor ampli-
tude. Attempting to directly identify the mechanism 
behind these results would necessitate medical and phys-
iological experimentation, which would involve consid-
erable costs and risks. Hence, in this study, we posit a 
hypothesis that biosignals related to muscle activity orig-
inate from tendons near the ankle joint. Our aim is to in-
directly corroborate this hypothesis through data science 
methods, allowing its plausibility to emerge. 
We conducted data acquisition experiments and analyzed 
data from 63 participants. A data acquisition system 

Abstract 

We collected biosignals from 63 participants and extracted the features corresponding to each 
level of exerted muscle force. Data were classified into typical and atypical patterns. Data analysis 
was performed using the Linear Latent Curve Model (LCM) and the Conditional Linear LCM. 
The typical patterns demonstrated a high degree of fit. Factors, such as ankle circumference and 
muscle mass, influenced the model intercept. A larger ankle circumference indicated attenuation 
of signal transmission from the tendon to the skin surface, leading to lower biosignal values. 
These results indicate that biosignals from the tendons near the ankle can be captured using 
piezoelectric film sensors. There are studies that define biosignals originating from tendons as 
mechanotendography. It has been demonstrated that the relationship between biosignals 
originating from tendons and the exerted muscle force can be explained linearly. Insights from 
this study may facilitate individualized approaches in the fields of motion control and 
rehabilitation. Physiological studies to elucidate the mechanisms underlying biosignal generation 
are necessary.  
Key Words: lower limb muscle activity, tendon biosignals, longitudinal data, latent curve model, 
piezoelectric film sensor.  

Eur J Transl Myol 34 (4) 12701, 2024 doi: 10.4081/ejtm.2024.12701

Longitudinal analysis of lower limb muscle activity and ankle tendon 
biosignals using structural equation modeling  
Tatsuhiko Matsumoto,1,2 Yutaka Kano1 

1Graduate School of Engineering Science, Osaka University, Osaka; 2Murata Manufacturing Co., 
Ltd., Kyoto, Japan. 
 
This article is distributed under the terms of the Creative Commons Attribution Noncommercial License (CC BY-NC 4.0) which permits 
any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited. 

- 15 -

Non
-co

mmerc
ial

 us
e o

nly



Longitudinal analysis of lower limb muscle activity and ankle tendon biosignals using structural equation modeling  
Eur J Transl Myol 34 (4) 12701, 2024 doi: 10.4081/ejtm.2024.12701

equipped with high-sensitivity piezoelectric film sensors 
was used to detect the biosignals at the ankle joint. The 
participants performed isometric exercises at four levels 
of muscle force exertion. The features of the piezoelectric 
film sensor that were correlated with the exerted muscle 
force were identified from the collected data. Longitudinal 
datasets, each consisting of four data points representing 
different exerted forces, were compiled for all the partic-
ipants. Statistical models were fitted to evaluate the rela-
tionship between the identified features and exerted 
muscle force. In addition, we investigated the factors con-
tributing to individual variations and their underlying 
mechanisms. 
 
 
Materials and Methods 
Experimental methods 
Participants 
A total of 63 healthy individuals aged 21– 58 years (31 
males and 32 females) participated in the experiment. 
Prior to the experiment, the physical measurements of the 
participants (age, height, weight, body fat percentage, 
skeletal muscle mass, ankle circumference, and average 
grip strength) were recorded. The body fat percentage and 
skeletal muscle mass were measured using a bioelectrical 
impedance analysis scale (InBody S10; InBody, Tokyo, 
Japan). Ankle circumference was measured in the upper 
ankle. The average grip strength was calculated as the 
mean of four measurements (two from each hand). 
 
Data acquisition system 
We developed a system for acquiring biometric signals 
near the ankle joint. The system uses a biodegradable pi-
ezoelectric film sensor (Picoleaf®, Murata Manufacturing 
Co., Ltd.)12 made of polylactic acid and is characterized 
by nonpyroelectric properties, making it less susceptible 
to body temperature. This feature allows for the generation 
of electric charges from material strain, enabling more ac-
curate measurements. Furthermore, the sensor, owing to 
its high sensitivity and flexibility, could detect minute skin 
displacements and vibrational changes caused by tendon 
movements, regardless of body contours, making it valu-
able for biological applications. The system was designed 
such that a sensor was positioned on the side of the 
Achilles tendon.13 The sampling frequency of the sensor 
was set to 1000 Hz.  
 
Exercise protocol 
The potential noise sources in this experiment are defined 
as follows: i) Experimental noise (noise that may occur 
during the experiment, such as body movements, system 
positioning, and participants not performing the exercises 
as intended); ii) Biological noise (noise that may arise 
owing to day-to-day variations in the physical and neuro-
logical properties of the participants). 
The experimental protocol was designed such that biomet-
ric signals were obtained from ankle joints with minimal 
experimental and biological noise. A Cybex isokinetic dy-
namometer (Cybex NORM®, HUMAC, CA, USA) was 

used14 to suppress experimental noise caused by body 
movements. The participants were seated in the dynanom-
eter with the knee rotation axis (the lateral epicondyle of 
the femur) aligned with the machine axis. The knee angle 
was fixed at 90°, and the shin pad was secured just above 
the external malleolus. The ankle angle was fixed at 90°. 
The right foot was used for the measurements, regardless 
of the participant’s dominant foot or hand, and was se-
cured accordingly. The dynanometer was calibrated ac-
cording to the manufacturer’s recommendations before 
clinical trials. The experiment was structured into three 
phases. The warm-up phase was initially conducted with 
two objectives, to prevent physical abnormalities in par-
ticipants during the test and to homogenize any heteroge-
neous physical and neurological properties, thereby 
reducing biological noise. In operation training phase, the 
researcher provided instructions to the participants. To en-
sure stable data acquisition, the participants were first se-
cured to a Cybex machine and provided ample practice 
time (approximately 1 min) to become familiar with the 
operation. This was done to reduce the experimental noise 
that could arise from participants’ failure to perform the 
exercises as intended. Data acquisition phase was placed 
after warm-up and operational training. Let i (i = 1, ... ,4) 
denote the exertion force number, j  (j = 1, ... ,63) the par-
ticipant ID, and pij  (pij = 25,50,75,100) the exertion force 
expressed as a percentage of each participant’s MVC. Iso-
metric plantar flexion movements of the ankle were per-
formed, and data were acquired in the following order: 
MVC (100% MVC), 25% MVC load (25% MVC), 50% 
MVC load (50% MVC), and 75% MVC load (75% 
MVC). Data acquisition was conducted in three sets, each 
lasting for 5s. The dynamometer-measured torque values 
were displayed in real time on a monitor used by the par-
ticipants to control the exertion force. The participants 
were instructed to gradually increase their exertion force 
over 10s with the goal of reaching the specified value at 
the 10-s mark. The experimenter also monitored and con-
firmed that the exerted force had reached a designated 
value before the measurement. A 20-s rest period was pro-
vided between each measurement set. The data acquisition 
system and procedure are illustrated in Figure 1. 
 
Data preprocessing 
Feature extraction 
The amplitude of the sensor signal and the exerted muscle 
strength exhibited a directly proportional relationship. In 
fields such as acoustics and vibration, the magnitude of 
the amplitude is quantified using the root-mean-square 
(RMS) value.15 We chose RMS as the feature for quanti-
fying the amplitude. Let t (1 ≤ t ≤ Tij) denote the time at 
which the raw data from the piezoelectric film sensor are 
acquired. If sijt represents the value of the piezoelectric 
film sensor signal at time t and RMSij is the RMS of the 
signal, the RMS can be defined by Equation (1). 
 

 
 

      
(1) 
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Furthermore, in the fields of acoustics and vibration, the 
values are often expressed in decibels relative to a stan-
dard reference value.16 A similar approach was adopted in 
the present study. The reference value RMS0 was defined 
as the minimum RMS value obtained from the steady-
state data of all participants, as shown in Equation (2). 
 

 
      

(2) 
 
The RMS0 value obtained from the experimental data was 
2.44 × 10−5. Therefore, the magnitude of the biosignal, ex-
pressed in dB, Vij was calculated using Equation (3): 
  

 
      

(3) 

 
Clustering 
After preprocessing, the data were structured into longitu-
dinal datasets with each participant j having a biosignal 
Vij corresponding to the exerted muscle force pij. The dif-
ference in Vij from the muscle force i to i + 1 was defined 
as ΔVkj (k = 1,...,3). Curve patterns were classified based 
on ΔVkj using the following procedure: i) Using density-
based spatial clustering of applications with noise 
(DBSCAN), the patterns were classified into typical and 

atypical curve patterns based on the differences ΔV1j (be-
tween 25% MVC and 50% MVC) and ΔV2j (between 50% 
MVC and 75% MVC);17 ii) After excluding typical curve 
patterns, the remaining curve patterns were reclassified 
using DBSCAN based on ΔV1j and ΔV2j, and it was man-
ually determined which belong to typical curve patterns 
and which do not; iii) Typical curve patterns and others 
were classified using DBSCAN based on the difference 
ΔV3j (between 75% MVC and 100% MVC). 
The classification based on ΔV1j and ΔV2j was separated 
from that based on ΔV3j because the former was part of an 
experiment in which participants controlled their exerted 
muscle force, whereas the latter was used for the maxi-
mum torque value assessment at 100% MVC. Thus, they 
potentially involved different types of noise. Figure 2 il-
lustrates the clustering procedure and types of atypical 
patterns. 
 
Data analysis methods 
Structural equation modeling (SEM) is a versatile theo-
retical framework extensively used in various research 
fields, such as social sciences and medicine, to analyze 
causal models involving latent and observed variables.18 
The fundamental procedure in SEM involves creating 
models based on hypotheses and then selecting the opti-
mal model by comparing the information criteria and fit 
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Figure 1. Illustration of the biometric signal acquisition system, device placement on the body and procedure.
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indices, thereby identifying the true hypothesis. In this 
study, we evaluated four measures: the adjusted goodness 
of fit index (AGFI), comparative fit index (CFI), RMSE 
of approximation (RMSEA), and standardized root mean 
square residual (SRMR). AGFI and CFI values greater 
than 0.9 generally indicate a good model fit.19,20 Similarly, 
RMSEA and SRMR values less than 0.08 are considered 
good, whereas values greater than 0.1 indicate a poor 
fit.21,22 These indices define the fit differently; therefore, 
we report all of them here. 
We based our analysis on the Latent Curve Model (LCM), 
which is well suited for longitudinal data.23 The LCM is a 
statistical model designed to model longitudinal phenom-
ena. It can estimate the trajectory of intra-individual 
changes over time and the inter-individual differences in 
these changes. Thus, it estimates parameters associated 
with time-variant general group tendencies and estimates 
the extent to which these parameters vary among individ-
uals within a population simultaneously. 

 
      (4) 

 
      (5) 

 
      (6) 

      (7) 
 

      (8) 

 

      (9) 

 
In this model, β0j represents the random intercept, which, 
in our study, denotes the population mean of the biosig-
nal magnitude for the participant j at 25% MVC exerted 
muscle strength pij. β1j is the random slope indicating the 
average change in the dependent variable Vij when the 
exerted muscle strength pij increases by 1%. The term rij 
is the residual error that represents the deviation of the 
measured value Vij for each exerted muscle strength pij of 
participant j from β0j + β1jpij. Equation (5) indicates that 
the deviation rij follows a normal distribution with zero 
mean and variance σ2. This model includes various as-
sumptions when approached using SEM. For example, 
explanatory variables for the random intercept denoted 
as x(l)

0j and those for the random slope denoted as x(m)
1j, 

with l and m representing the number of explanatory 
variables, can be added to equations (6) and (7) to trans-
form them into equations (10) and (11), respectively, re-
sulting in a conditional LCM. Equations (10) and (11) 
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Figure 2. Clustering procedure and illustration of atypical patterns.
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allows us to focus on explaining interindividual differ-
ences.24,25 
 

    (10) 

 
    (11) 
 

 
Results 
Linear LCM 
Path diagram is presented in Figure 3. Equalvariance con-
straints are applied to the variances of V1j, V2j, and V3j, 
whereas V4j is treated separately. This decision is based on 
the different types of noise involved, as discussed in Sec-
tion II-B.2.  
Table 1 displays the fit indices and the parameters using 
only typical pattern data. Overall, these indices indicate a 
good fit. The CFI and AGFI reflect the overall fit of the 
proposed model to the observed data, while the RMSEA 
and SRMR highlight the discrepancies, uncertainties, and 
error rates between the actual observations and predic-
tions. The results were favorable based on both sets of in-
dices.  
Additionally, the estimated average intercept γ00 was 
53.392, and the average slope γ10 was 0.083. The 95% con-
fidence interval for the slope was positive, indicating that 
the biosignal Vij tended to increase monotonically on aver-
age, as the exerted muscle strength pij increased. This 
monotonic increase was quantified in increments of 0.083 
for each 1% increase in pij. Moreover, the variance in the 
slope τ11 was 0.001. The slope distribution was assumed 
to follow a normal distribution, as indicated in Equation 
(5), suggesting that the biosignal Vij increased monotoni-
cally with the exerted muscle strength pij, regardless of in-
terindividual differences. 
 
Conditional linear LCM 
A conditional linear LCM was constructed using partici-

pant-specific information to estimate intercepts and 
slopes. Participant-specific information was selected after 
removing multicollinearity through a stepwise variable in-
crease and decrease method based on the Akaike infor-
mation criterion.  
Although the SRMR value was slightly high (0.092), the 
AGFI, CFI, and RMSEA indices indicated a good fit. This 
implies that although the model fit the data well, there is 
potential for improvement through structural adjustments 
or consideration of additional variables. Overall, the 
model demonstrated high reliability. The estimated value 
of the explained variance, PVE(τ00) was 0.421, which in-
dicates that the explanatory variables for the intercept 
could explain 42.1% of the individual variance. Therefore, 
the selected explanatory variables contributed signifi-
cantly to the estimation of the biosignal value at 25% 
MVC. 
Table 2 lists the explanatory variables selected for the in-
tercepts and slopes. The selected explanatory variables for 
the intercept were the sensor value at steady state (0% 
MVC), maximum torque value at 100% MVC, ankle cir-
cumference, and average grip strength. All the variables 
contributed significantly to the intercept estimation when 
a two-tailed t-test is conducted at the 5% significance 
level. The most influential variable was the maximum 
torque value at 100% MVC, with a regression coefficient 
of 0.063, indicating that the intercept fluctuated by ±2.64 
based on this variable. The other variables also signifi-
cantly influenced the intercept: the sensor value at the 
steady state (±2.27), ankle circumference (±1.78), and 
average grip strength (±2.03). However, none of the vari-
ables significantly affected the slope. 
 
Comparison of typical and atypical patterns 
Figure 4 presents a box plot that illustrates the distribution 
of the physical and experimental data for all participants 
and the information of the participants classified as having 
atypical patterns. The box represents the interquartile 
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Figure 3. Path diagram for the linear LCM and conditional linear LCM.
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range of the dataset and the whiskers extend to cover the 
remainder of the distribution. We denote the first quartile 
by Q1, the third quartile by Q3, and the interquartile range 
by IQR = Q3 − Q1. The lower and upper whiskers extend 
to the minimum value within Q1 − (1.5 × IQR) and maxi-
mum value within Q3 + (1.5 × IQR), respectively. Data 
points outside these ranges were plotted as outliers. The 
overall distribution of the participants did not show sig-
nificant differences in terms of age between males and fe-
males. 
The participant with atypical pattern A, showing a mono-
tonic decrease, was a male with short stature and a lean 
body type. Participants with atypical pattern B, showing 

a larger increase in the biosignal value relative to the ex-
erted muscle strength, included two males and one female. 
One of the males had a higher height, weight, body fat 
percentage, and maximum torque at 100% MVC. Partic-
ipants with atypical pattern C, in which the biosignal 
values tended to decrease during 100% MVC, included 
two males and four females. One male patient had an 
ankle circumference notably larger than his physique. 
Among the females, one had a larger ankle circumference, 
higher BMI, and body fat percentage. The participants, re-
gardless of gender, exhibited high maximum torque values 
at 100% MVC. Additionally, four of the five participants 
with pattern C had notable experimental notes, including 
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Table 1. Parameters and Fit Indices of Linear LCM and Conditional Linear LCM. 

                                                Linear LCM                                                     Conditional linear LCM. 
Model            Estimate             Standard      95% confidence       Estimate             Standard     95% confidence 
parameter                                     error                 intervals                                             error               intervals 

γ00                     53.392                   0.501           [52.400, 54.383]          41.784                   5.991         [29.921, 53.646] 

γ10                      0.083                    0.005           [0.0073, 0.0092]           0.083                    0.005           [0.073, 0.092] 

τ00                     11.079                      -                           -                       6.414                       -                          - 

τ10=τ01               -0.041                       -                           -                       -0.037                       -                          - 

τ11                      0.001                       -                           -                       0.001                       -                          - 

σ2
1-3                    1.377                       -                           -                       1.386                       -                          - 

σ2
1-3                    2.125                       -                           -                       2.069                       -                          - 

PVE(τ00)                -                           -                           -                       0.421                       -                          - 

                                        Fit indices for the linear LCM                               Fit indices for the linear LCM 

                             χ2    df  p-value   AGFI    CFI   RMSEA  SRMR       χ2     df  p-value  AGFI   CFI  RMSEA SRMR 

                           8.39  7     0.298    0.999   0.993    0.061     0.068     27.65 19   0.090    0.998 0.963   0.052     0.092

 
Table 2. Explanatory variables selected for the intercept and slope of the conditional LCM. 

             Explanation variablefor intercept         Intercept       Variance        Estimate  Standard error   p-value 

x(l)
0j               Sensor value at steady [dB]                  49.577            13.427             0.317              0.089             0.000 

                   Torque value at MVC [N·m]                 53.660           458.074            0.063              0.019             0.001 
                     Ankle circumference [cm]                   21.586             3.294             -0.501             0.197              0.011 
                     Average grip strength [kg]                   33.610           108.262            0.100              0.040             0.013 

x(l)
1j         All variables non-significant based on variable selection
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changes in foot fixation settings or unstable torque values 
during the experiment. 
 
 
Discussion and implications 
Factors contributing to inter-individual differences 
When examining the explanatory variables for the inter-
cept, it was observed that a larger ankle circumference re-
sulted in a lower intercept value. This outcome aligns with 
the hypothesis that biosignals generated by tendons atten-
uate before reaching the skin surface and that this attenu-
ation is proportional to the distance from the tendon to the 
skin surface. This hypothesis is consistent with the finding 
that higher steady-state sensor values lead to higher inter-
cepts. 
Furthermore, higher maximum torque values at 100% 
MVC were associated with higher intercept values. Gen-
erally, individuals with higher maximum torque values are 
more likely to have greater muscle mass. At 25% MVC, 
individuals with a greater muscle mass can mobilize more 
muscles. Consequently, more muscle activation leads to 
higher biosignal quantities, which explains why individ-
uals with higher maximum torque values at 100% MVC 
had higher intercept values. This hypothesis is also con-
sistent with the finding that higher average grip strength 
leads to higher intercept values.  

Factors contributing to atypical patterns 

Further analysis was conducted for participants with atypi-
cal pattern C, who showed a decreasing trend, especially 
at p4j. Among the five participants identified as exhibiting 
pattern C, participants with IDs 109 and 114 displayed ex-
ceptionally high maximum torque values at 100% MVC. 
Such high values indicate that the participants used syn-
ergistic muscles (such as quadriceps) in addition to the 
primary muscles during the dynamometer test. In this sce-
nario, the combined torque values were recorded as the 
maximum torque at 100% MVC. Consequently, the torque 
settings for p1j to p3j were set to be higher than the actual 
abilities of the participants, resulting in higher values of 
V1j to V3j. However, the activation of synergistic muscles 
can reduce the activity of the primary muscles.26 If V4j rep-
resents the activity of the primary muscles, it exhibits 
lower values. The average grip strength of these two par-
ticipants with IDs 109 and 114 supports the hypothesis 
that the maximum torque values at 100% MVC include 
the force from the synergistic muscles. Furthermore, 
changes in the fixation methods during an experiment can 
alter the contribution of synergistic muscles.27 The control 
of the primary muscles also affects the ratio of the primary 
and synergistic muscle contributions. These phenomena 
were observed in the experimental notes of four of the five 
participants, suggesting that the high maximum torque 
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Figure 4. Box plot of participant’s physical information and participants information for atypical patterns.
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values at 100% MVC included forces from the synergistic 
muscles. Thus, atypical pattern C can be attributed to ex-
perimental noise owing to the unintended use of synergis-
tic muscles during the 100% MVC tests. This also implies 
the validity of excluding pattern C from the model.  
 
Relationship between biosignals and                               
mechanotendography 
The analysis revealed that the slopes, including the 95% 
confidence intervals, are positive for both the latent 
growth model and the conditional latent growth model. 
Specifically, the positivity of the slopes in the conditional 
latent growth model suggests that, for both genders, the 
biosignal Vij increases monotonically on average with the 
increase in muscle strength pij. This study assumes the 
presence of biosignals originating from tendons, which 
Schaefer et al. have defined and reported as mechanoten-
dography.28,29 Although they assumed biosignals akin to 
acoustic signals, they considered lower frequencies and 
used the same piezoelectric sensors as we did. The bio-
signals dealt with in this study are likely related to mech-
anotendography as studied by Schaefer et al. To date, no 
study has verified the trends of mechanotendography 
under multi-level isometric contraction loads. This study 
suggests that mechanotendography can contribute not 
only to the detection of muscle activity levels but also to 
their quantification. Future research needs to investigate 
the relationship with the mechanotendography defined by 
Schaefer et al. 
 
 
Conclusions  
In this study, the biosignals originating from the tendons 
near the ankle joint were used for limb muscle activity 
quantification. We conducted data acquisition experiments 
and analyses on 63 participants to capture biosignals from 
the ankle joint and extract features corresponding to the 
exerted muscle forces. For typical patterns, modeling was 
performed using a linear LCM and a conditional linear 
LCM. The linear LCM for typical patterns showed high 
potential for linearly explaining the relationship between 
the exerted muscle forces and biosignals. Conditional lin-
ear LCM revealed that physical information, such as ankle 
circumference and average grip strength, influenced the 
intercept of the model. 
This study demonstrated that the relationship between the 
biosignals and exerted muscle forces can be explained by 
a simple linear structure, which is advantageous for esti-
mating exerted muscle forces using biosignals. Ad-
ditionally, participant-specific physical information can 
be used to adjust for individual biases. These results in-
crease the feasibility of realizing a generalized model for 
estimating exerted lower limb muscle forces.  
We plan to analyze the relationship between the EMG sig-
nals and biosignals captured in this study to further dem-
onstrate the efficacy of biosignals. Further experiments 
will be conducted under different conditions to validate 
the applicability of this method to other muscles and areas 
of motion. Experiments to elucidate the mechanisms un-

derlying biosignal generation should also be conducted 
from a physiological perspective. 
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