
Archivio Italiano di Urologia e Andrologia 2021; 93, 4418

ORIGINAL PAPER

No conflict of interest declared.

direction of possible outcomes, after performing each
treatment-procedure for every individual patient. 
The best method to accomplish the aforementioned goal,
especially in urology, was the development of nomo-
grams, which are based on conventional statistical meth-
ods (1). Such statistical methods are performed on a spe-
cific dataset with the main purpose to identify potential
relationships (2). These techniques are usually applied on
local datasets, but to be valid, a set of assumptions should
be met, which commonly are underestimated in medical
literature (3). With the increase in volume and availabili-
ty of data, a novel tool has emerged and has the potential
to surpass all others, setting new standards in the man-
agement of patients. This novel tool is machine learning,
a major artificial intelligence (AI) field, which develops
models based on large volumes of data in order to detect
relationships or make predictions (3). The strict assump-
tions, which determine statistics applicability, do not
pose a limit for AI and machine learning (ML) techniques,
offering the advantage of greater flexibility and access to
more healthcare-related data, which commonly do not
comply with these rules (3).
In the past two decades, AI has been increasingly applied
in everyday urological clinical practice and has shown
promising results (1, 4). Most of available data of AI
applications in urology, deal mainly with oncologic
patients and associated health issues. In benign prostatic
enlargement (BPE), AI has been recently used for predict-
ing the severity of obstruction using diagnostic tests
(5, 6). Torshizi et al. (6) attempted to infer symptom score
and also provide a treatment suggestion for BPE, using a
fuzzy-ontology system, which relies on a logic of impre-
cise information or variables used to make inferences
(6, 7). A reported accuracy of 90%, when compared to
expert opinion for making this decision, implies that AI
can be helpful in benign urological conditions.
Back in 2001, Megherbi et al. (8), evaluated four AI algo-
rithms regarding their predictive ability of surgical treat-
ment success for BPE, using either transurethral resection
or visual laser ablation of the prostate (VLAP) (8). The small
number of patients, along with the vague definition of
outcome, limit the applicability of these findings. 

Objectives: Artificial intelligence (AI) is
increasingly used in medicine, but data on

benign prostatic enlargement (BPE) management are lacking.
This study aims to test the performance of several machine
learning algorithms, in predicting clinical outcomes during BPE
surgical management.
Methods: Clinical data were extracted from a prospectively col-
lected database for 153 men with BPE, treated with
transurethral resection (monopolar or bipolar) or vaporization
of the prostate. Due to small sample size, we applied a method
for increasing our dataset, Synthetic Minority Oversampling
Technique (SMOTE). The new dataset created with SMOTE has
been expanded by 453 synthetic instances, in addition to the
original 153. The WEKA Data Mining Software was used for
constructing predictive models, while several appropriate statis-
tical measures, like Correlation coefficient (R), Mean Absolute
Error (MAE), Root Mean-Squared Error (RMSE), were calculat-
ed with several supervised regression algorithms - techniques
(Linear Regression, Multilayer Perceptron, SMOreg, k-Nearest
Neighbors, Bagging, M5Rules, M5P - Pruned Model Tree, and
Random forest).
Results: The baseline characteristics of patients were extracted,
with age, prostate volume, method of operation, baseline Qmax
and baseline IPSS being used as independent variables. Using
the Random Forest algorithm resulted in values of R, MAE,
RMSE that indicate the ability of these models to better predict
% Qmax increase. The Random Forest model also demonstrated
the best results in R, MAE, RMSE for predicting % IPSS reduc-
tion.
Conclusions: Machine Learning techniques can be used for mak-
ing predictions regarding clinical outcomes of surgical BPRE
management. Wider-scale validation studies are necessary to
strengthen our results in choosing the best model.
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INTRODUCTION
The holy grail of surgery, in every surgical field, is the
ability to make accurate predictions of magnitude and
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Several techniques exist for the surgical management of
BPE, including transurethral vaporization using normal
saline and bipolar energy (TUVis), transurethral resection
using normal saline and bipolar energy (TURis) and
transurethral resection using monopolar energy (TURP),
with results showing similar efficacy in most trials at a
short-term follow-up of 12 months, using conventional
statistical analysis (9).
The aim of this study is to test and compare several
machine learning algorithms, regarding their predictive
ability for assessing treatment outcomes for BPE (IPSS
score and Qmax changes), using baseline patient charac-
teristics and one of the treatment methods (TUVis, TURis,
TURP).

METHODS

Patients
Patients suffering from BPE, who were admitted at our
tertiary care Urology Department between September
2017 and March 2019, were operated with one of three
available methods (transurethral vaporization-TUVis,
transurethral resection using bipolar energy-TURis,
transurethral resection using monopolar energy-TURP),
according to patient choice, physician surgical compe-
tence and equipment availability. Data were extracted ret-
rospectively, using a prospectively collected database,
and the study protocol was duly approved by the institu-
tional review board of the hospital (19836/07.10.2020).
All patients signed informed consent before being treated
for their condition and were treated according to the
principles of the Helsinki Declaration (10).
Patients were included in the study if they had prostate
volume > 30 ml, indication for surgical management (uri-
nary retention, failure of medical management, recurrent
hematuria or urinary tract infections), absence of diag-
nosed prostatic adenocarcinoma and/or pathologic digital
rectal examination, IPSS> 7, and Qmax < 15 ml/sec.

Data collected
Baseline demographic data (age, medical history, use of
antiplatelets, indication for surgery, ASA score) and BPE-
specific data (IPSS/Qmax/post-voiding residual (PVR) pre-
and postoperatively, prostate volume, PSA, procedural
time, haemoglobin, and sodium changes and complication
rates) were collected. Functional outcomes were assessed
based on follow-up visits at 12 months after surgery.

Operative technique 
Surgery was performed under spinal anesthesia in all
cases, using a 26 Fr continuous flow resectoscope
(Olympus TURis 2.0, Iglesias type) for bipolar resection and
vaporization and a 28 Fr non-rotating continuous flow
resectoscope (Karl Storz) for monopolar resection.
Glycine 1.5% solution was used as irrigation flow for
monopolar TUR-P and N/S 0.9% for bipolar TUR-P and
vaporization. During vaporization of the prostate, an elec-
trode with a mushroom-like shape was used, and energy
settings were set at 270-290 watt for vaporization and
120-140 watt for coagulation. For transurethral resection,
the method of Mauermayer or Nesbit was followed (11),

while for vaporization, the hovering technique was used
during which the electrode comes in direct contact with
the prostatic tissue. 

Data analysis
Basic descriptive statistics (mean, standard deviation,
range) for the numerical variables (age, prostate volume,
baseline Qmax, baseline IPSS, % Qmax Increase, % IPSS
reduction) have been used. Several independent variables
and outcome measures have been tested, but we present
only those predictors resulting in significant outcomes.
The WEKA Data Mining Software was used for this study.
This comprises an open-source machine learning toolkit
containing a wide range of learning algorithms (12). Since
no credible validation can be made to assess the perform-
ance of the final model (13), if the total dataset is used to
train a model and then reused for testing, we set aside
some data which must not be used during training. The
dataset set aside makes up the test set, which allows us to
compare actual values of the test data to the values pre-
dicted from the WEKA-based models. 
The most widely used method to take advantage of the
dataset is cross-validation, where we can use all of the
data in test sets, but not simultaneously. Therefore, our
data were divided into a number of equal-sized subsets,
called folds. If we have k folds, then this is called k-fold
cross-validation. Each fold is used once for testing on the
model built using the remaining k-1 folds. Cross-valida-
tion is widely regarded as a reliable way to assess the
quality of results from machine learning techniques; in
our analysis, we have used 10-fold cross-validation (14).
While k-fold cross-validation is a standard method for
making good use of available data, there are still various
statistical measures which can be computed, and which
reveal different interpretations/aspects.
In order to find the best regression model for numeric
prediction, we consider the performance measures of
Correlation coefficient (R), Mean Absolute Error (MAE),
Root Mean-Squared Error (RMSE), as reported by WEKA
software (13) as described in Appendix A (Supplementary
Materials). The supervised regression algorithms - tech-
niques that are used in this research are: Linear Regression,
Multilayer Perceptron, SMOreg, k-Nearest Neighbors,
Bagging, M5Rules, M5P - Pruned Model Tree, and Random
forests. Although the technical details of these techniques
are beyond the scope of this article, a summary of them can
be found in Appendix B (Supplementary Materials).
Due to the small size of the initial data set, we examined the
performance of aforementioned algorithms by applying a
method for increasing our sample size, the Synthetic
Minority Oversampling Technique (SMOTE), which is a sta-
tistical method for uniformly increasing the number of
cases in a data set to render it more balanced. However,
in our case, we just used SMOTE to increase our dataset
by generating extra artificial instances in a statistically
sound way. 
The new (artificial) instances that were generated by the
SMOTE are not just duplicates of existing minority
instances. Instead, this method takes feature space samples
for each target class and its nearest neighbours. After that,
new instances are produced that combine features of the
target case with those from its neighbours (15).
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RESULTS
A total of 153 patients with BPE were included (52 in
TUVis group, 52 in bipolar-TURis group and 49 in
monopolar TURP group). Baseline patient characteristics
and % Qmax Increase, % IPSS reduction, are shown in
Table 1. Machine learning techniques were applied in all
outcomes gathered from chart review (functional out-
comes-IPSS/PVR/Qmax change after surgery, haemoglobin
drop postoperatively, sodium drop postoperatively, pro-
cedural time) using method of operation, age, prostate
volume, ASA score, indication for surgery, use of
antiplatelets, baseline Qmax and baseline IPSS as predic-
tors, but in this study, only metrics of significant findings
are reported. 
In order to better depict the increase in Qmax and reduc-
tion in IPSS, we use percentages rather than absolute dif-
ferences.
After applying the SMOTE, the new dataset contains an
extra 453 synthetic instances,in addition to the original
153 patients’ data. 
The new allocation of the 606 instances is: 205 in TUVis
group, 205 in bipolar-TURis group and 196 in monopo-
lar TURP group. Baseline patient characteristics and %
Qmax increase, % IPSS reduction, are shown in Table 2.
According to Table 3, considering all three metrics (R,
MAE, RMSE) for % Qmax increase, Random Forest algo-
rithm outperforms other models, with values of correla-
tion coefficient (R) 0.9697, MAE 7.78 and RMSE 13.26.
The values of MAE and RMSE are percentage points
since the target variable % Qmax increase denotes the
corresponding percentage increase of Qmax after apply-
ing the corresponding system approach on a specific
patient. 
As shown in Table 4, considering all three metrics (R,
MAE, RMSE) for % IPSS reduction, the Random Forest
model again outperforms other models, with values of

Table 1. 
Baseline patient
characteristics.

Total Per system
TUVis TURis TURP

Variable Range Mean/SD Range Mean/SD Range Mean/SD Range Mean/SD

Age (years) 47-91 70.39/8.67 47-91 69.87/9.41 47-89 70.87/8.73 51-88 70.43/7.68

Prostate volume(ml) 20-175 59.48/24.44 31-98 59.88/20.51 20-175 63.48/29.20 20-105 54.81/21.78

Baseline Qmax (ml/sec) 3.40-11.90 7.24/1.75 3.40-9.30 6.52/1.53 3.40-11.90 7.83/1.90 4.50-9.90 7.38/1.51

Baseline IPSS 16-29 21.81/2.97 16-28 22.85/3.05 17-29 21/2.60 17-28 21.57/2.90

Percentage Qmax increase(%) 60-394 160.39/62.98 89-388 181.27/60.0 60-394 149.60/72.4 69-296 149.67/47.89

Percentage IPSS reduction(%) 29.4-76.5 59.5/7.1 29.4-75 57.3/7.6 44.0-75.0 63.2/7.1 50-76.5 58.07/4.55

Table 2. 
Augmented
dataset statistics
after applying
SMOTE *.

Total Per system
TUVis TURis TURP

Variable Range Mean/SD Range Mean/SD Range Mean/SD Range Mean/SD

Age (years) 47-91 70.44/8.46 47-91 70.75/8.78 47-89 71.41/8.77 51-88 69.09/7.57

Prostate volume (ml) 20-175 58.94/22.94 31-98 61.24/20.66 20-175 62.56/25.83 20-105 52.74/20.64

Baseline Qmax (ml/sec) 3.40-11.90 7.16/1.50 3.40-9.30 6.67/1.24 3.4-11.9 7.68/1.69 4.50-9.90 7.13/1.37

Baseline IPSS 16-29 21.90/2.81 16-28 22.79/2.83 17-29 20.76/2.49 17-28 22.06/2.71

Percentage Qmax increase (%) 60.00-394.00 162.10/53.12 89.00-388.00173.62/47.96 60.00-394.00 152.78/63.82 59.00-296.00 159.81/42.71

Percentage IPSS reduction (%) 29.4-76.5 59.28/6.28 29.4-75.0 57.46/6.5 44-75 63.07/6.15 50.0-76.5 57.30/4.02
* SMOTE: Synthetic Minority Oversampling Technique. 

Table 3. 
Percentage Qmax increase prediction using various machine 
learning methods.

Method R MAE RMSE

Linear regression 0.9004 17.8 23.12

Multilayer perceptron 0.9088 16.7 22.2

SMO reg 0.895 17.7 23.85

lazy.IBk 0.935 9.24 18.80

meta.Bagging 0.9526 11.13 16.25

M5Rules 0.9274 14.95 19.88

Trees.M5P 0.9253 14.9 20.15

trees.RandomForest 0.9697 * 7.78 * 13.26 *

R: Correlation coefficient; MAE: Mean Absolute Error; RMSE: Root Mean-Squared Error. 
Best results are marked by * in each column. 

Table 4. 
Percentage IPSS reduction prediction using various machine
learning methodslearning methods.

Method R MAE RMSE

Linear regression 0.4493 4.14 5.61

Multi layer perceptron 0.5751 3.95 5.36

SMOreg 0.4199 4.17 5.7

lazy.IBk 0.8793 1.53* 3.07

meta.Bagging 0.7906 2.73 3.91

M5Rules 0.678 3.35 4.62

trees.M5P 0.7231 3.17 4.36

trees.RandomForest 0.8989 * 1.63 2.80 *

R: Correlation coefficient; MAE: Mean Absolute Error; RMSE: Root Mean-Squared Error.
Best results are marked by * in each column. 
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correlation coefficient 0.8989, MAE 1.63, and RMSE 2.80,
with the only exception that k-Nearest Neighbors model
has smaller but very close value of MAE. The values of
MAE and RMSE are percentage points since the target
variable % IPSS reduction denotes the corresponding per-
centage decrease of IPSS after applying the corresponding
system approach.
A Decision Tree algorithm is easily understood and ideal
for obtaining non-linear relationships between independ-
ent and dependent variables. Random forest is a collec-
tion of decision trees constructed in a specific random
manner. Random Forest usually performs better than a
single Decision Tree in terms of accuracy and reduced
overfitting. The major advantages of Random Forests are
that they can handle both linear and non-linear relation-
ships as well, they are not significantly impacted by out-
liers and they effectively balance the bias-variance trade-
off. Figure 1 shows an example of how a Random Forest
is constructed from Decision Trees.
Correlation coefficient (R) is used to measure the strength
of a linear relationship between two variables, in our case
the predicted and the actual values of the target variables
% Qmax increase and % IPSS reduction. The closer the
value of the correlation coefficient is to 1, the better the
regression model is.
Mean Absolute Error (MAE) is the average error between
the absolute value of the predicted and actual value for
each pair. Root Mean-Squared Error (RMSE) It shows how
far predicted values fall from measured actual values
using Euclidean distance.
Concerning the values of the MAE and RMSE, the closer

their values to zero, the better the model's performance,
since both metrics are proportional to the difference
between the actual and predicted values.
Readers can find on the website (16) two WEKA data set
sample files (.arff) for experimental purposes to create
their own models based on their local facility data.
Furthermore, we have uploaded the two experimental
models for % Qmax increase and % IPSS reduction predic-
tion with considered independent variables the method
of operation, age, prostate volume, baseline Qmax and
IPSS.

DISCUSSION
The ultimate goal of AI is to create systems which are able
to perform intellectually challenging tasks, similar to
those performed by humans. Today, the closest we get to
such systems, is usually aided by non-linear mathematic
and statistical models (17) and mostly drawn from the
machine-learning sub-field of AI, though significant
developments also occur in other sub-fields too, such as
natural language processing and visual perception with
deep learning (7). 
A substantial number of such models attempt to assist
medical practitioners, using a variety of sources for data
and feedback, such as handwritten notes and books,
medical imaging scanning and tissues grading. So, it is
the impact on everyday clinical practice that will likely
guide the training of these models and also decide the
success of these AI technologies. In our study, we tested
several machine learning algorithms, in order to find the

Figure 1. 
Development of a random forest from decision trees.
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one with the least error in predicting IPSS reduction and
Qmax increase, taking into consideration patient parame-
ters that are widely available and easily assessed during
daily urological practice in a usual clinical setting. 
Physicians could use these algorithms preoperatively and
in conjunction with clinical judgement and discussion
with patients, decide whether to perform surgery or not.
There are, so far, some, but sparse, data about the imple-
mentation of this technological advance in urology, with
the majority of existing studies in urological literature,
focusing on the effect of these systems in improving pre-
diction accuracy in prostate cancer diagnosis and man-
agement. 
There is still an unmet need for better prostate cancer
detection in order to avoid unnecessary biopsies. A recent
paper investigated different prostate-specific antigen (PSA)
assays and developed a novel predictive tool based on
artificial neural networks (ANN), concluding that AI tech-
nology can aid in minimizing variability of each PSA assay
but only if a separate ANN system is utilized for every
PSA assay and not one for all (18). 
As for the mpMRI diagnostic optimization, alongside
their fusion biopsy implications, there is an increasing
body of literature that reports on system development to
integrate pre-processing, segmentation, and registration
in order to fully automate the procedure, with promising
outcomes so far (19-21).
Besides cancer-related research, AI systems have also
been utilized in other aspects of urological pathology. In
urinary stone disease, there are reports that AI systems
have been implemented in order to predict stone compo-
sition (22), surgical outcomes of percutaneous nephrolitho-
tomy (PNL) (23), and shock wave lithotripsy (SWL) (24),
with excellent accuracy. Similarly in patients with vesi-
coureteral reflux, as reported by Seckiner et al. (25), the
ANN reported 98.5% sensitivity, 92.5% specificity, 97%
positive predictive value, and 96% negative predictive
value, which can definitely be considered very promising.
Contradictive results were published for the role of AI
systems in predicting surgical outcomes, mainly in robot-
ic surgery (4, 26).
The necessity to personalize treatment in patients with
cancer and the high heterogeneity of neoplastic diseases
is a potential reason that led scientists to focus mainly on
this field of medicine and less on benign conditions like
BPE.
Notably, the implementation of AI techniques in BPE
diagnosis and, especially, treatment is at its early stages,
with currently scarce reports about the utilization of AI
systems in BPE patients. Torshizi et al. presented a hybrid
fuzzy- ontology intelligent system with multiple layers
that consisted of two modules: the first was evaluating
symptoms severity, whereas the second was evaluating
the management options. Nevertheless, this system did
not evaluate the outcomes of different surgical entities
according to individual patient characteristics (6).
Furthermore, the evaluation of bladder outlet obstruction
symptoms has been the topic of another relatively recent
study, where the detection rate of BPE in these patients
using an ANN was 72%, and where the authors conclud-
ed that the pressure-flow study could not be omitted and
replaced with the intelligent system. 

The management of BPE depends on disease stage, symp-
tom intensity, patient preference and health status.
Common indications for surgical management include
failure of medical treatment for moderate- severe lower
urinary tract symptoms (LUTS), recurrent urinary reten-
tion or infections, hematuria, bladder stones, kidney
damage. A common perception is that prostate volume
correlates with symptom severity and with health-related
quality of life, but this is not backed up by the relevant
literature (27). A clinical dilemma occurs in patients who
do not fulfill criteria and absolute indications for surgery,
while both physicians and patients need to know an esti-
mation of functional outcomes post-operatively. 
Diagnostic tests are not highly specific for attributing
LUTS to BPE, except for urodynamic testing, which is an
invasive, costly and time-consuming examination. Choo
et al developed a nomogram, which permits prediction of
benign outlet obstruction-related surgery, with satisfacto-
ry metrics (28) based on clinical and urodynamic param-
eters. Since urodynamics is not available at every clinical
setting, these nomograms may not be applicable for a
substantial percentage of patients. 
According to Pielke (1984), a model can be considered
predictive if two conditions are satisfied: (a) the standard
deviations of the predictions and observations are
approximately the same, and (b) RMSE is less than the
standard deviation of the observations (29). Our results
indicate that the Root Mean Squared Error (13.26) for the
model % Qmax increase Random Forest is much smaller
than the value of the standard deviation (53.12) of the
actual values of the dependent variable % Qmax increase.
Furthermore, the standard deviation of the predicted val-
ues is 57.53 percentage points (p.p.), which is close to the
corresponding standard deviation of the actual values
(62.79 p.p.). 
The results for the second model (% IPSS reduction
Random Forest), indicate that the Root Mean Squared Error
(2.80) for the best model is also much smaller than the
value of the standard deviation (6.28) of the actual values
of the dependent variable % IPSS reduction, and the stan-
dard deviation of the predicted values is 5.13 percentage
points (p.p.) is very close to the corresponding standard
deviation of the actual values (5.31 p.p.). Therefore, our
proposed model meets the two conditions to be considered
predictive, both regarding % Qmax increase and % IPSS
reduction. 
Personalized medicine is touted as the future in health-
care settings, especially after the development of large-
scale databases with patient –omic characteristics (pro-
teomics, genomics, metabolomics etc). Predictive analyt-
ics on data of such volume and complexity seems to be
feasible using AI techniques with the ability to adapt and
‘’learn’’ from data during the whole process, giving end-
less opportunities both for patient outcomes improve-
ment and cost savings for healthcare systems (30). 
A limitation of our study is that, due to the limited sam-
ple size, our models may not be immediately applicable
to all urology departments. For that reason, it will be
preferable that our methodology is implemented in the
data of each local facility, or ideally, on a larger pool of
data collected from multiple sites, so as to have a greater
potential for learning and test whether the mean absolute
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error can be reduced. Another drawback of this study is
that laser methods for prostate resection were not studied
due to the lack of appropriate equipment during the peri-
od of data collection. 
Moreover, using more clinical-related data in the future,
such asomic data, could pave the way for producing bet-
ter predictive models. The retrospective collection of data
is also a limitation, but since this was performed through
a prospectively collected database, confounding is par-
tially alleviated.

CONCLUSIONS
BPE is a very common clinical condition, with various
treatment modalities available for patients. At the same
time, AI models increasingly provide surgeons with accu-
rate decision-making tools. 
As health information system (HIS) use is expanded in a
healthcare facility, it will be easier to utilize data collect-
ed for the HIS using artificial intelligence techniques to
benefit patients.
This study presents a methodology for predicting clinical
outcomes in BPE management, according to pre-opera-
tive characteristics and a variety of relatively standard and
widely available AI techniques. Results are promising to
regard IPSS and Qmax improvement, but more validation
studies are needed before a wider scale application of
these findings. 
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