ORIGINAL PAPER - SUPPLEMENTARY MATERIAL

CFTR Exon 10 deleterious mutations in patients with congenital bilateral absence of vas deferens in a cohort of Pakistani patients

Khush Bakhat¹, Irsa Mateen², Hina Saif³, Kanwal Anwar¹, Sadaf Sarfraz¹, Sheza Javaid¹, Khaleeq-ur-Rehman⁴, Adnan Arshad¹, Muhammad Mustafa¹

¹ KAM School of Life Science, Forman Christian College, (A Chartered University), Lahore, Pakistan;

² School of Biochemistry, Minhaj University Lahore, Lahore, Pakistan;

³ Department of Emerging Allied Health Technologies, University of Lahore, Pakistan;

⁴ Department of Urology, Fatima Memorial Hospital College of Medicine & Dentistry, Lahore, Pakistan.

Table S1.

Sequences of primers used for the PCR amplification, amplicon size along with its position on human genome.

Sr. #	Primer	Sequence	Amplified genomic region	Product size
01	EX10-CFTR-FWD	5'-AGTGTAATGGATCATGGGC-3'	chr7:117548511 -	393bp
	EX10-CFTR-REV	5'-CTTCCAGCACTACAAACTAG-3'	117548903	
02	PR-CFTR-FWD PR-	5'-TGGACCTAAAGAGAGGCC-3'	chr7:117479636 -	469bp
	CFTR-REV	5'-ACCTCTGCATGGTCTCTC-3'	117480104	

Table S2.

Identified mutations in CFTR-Exon10.

Sr.#	Patient's ID	Mutation position on genome	Nucleotide change	Amino acid change	Mutation type
01	HWP3	Chr7: 117,548,798	T-C	V456A	Missense
02	HWP4	Chr7: 117,548,798	T-C	V456A	Missense
03	HWP6	Chr7: 117,548,822	A-G	K464E	Missense
04	HWP12	Chr7: 117,548,798	T-C	V456A	Missense
05	HWP13	Chr7: 117,548,742	T-G	G437G	Silent
06	HWP14	Chr7: 117,548,798	T-C	V456A &	Missense
		Chr7: 117,548,724	T-C	S431S	Silent

Figure S1.

Agarose gel electrophoresis of DNA products: (a) Extracted genomic DNA from selected patients resolved using 1% agarose. (b) Validation of 469bp PCR products amplified from promoter region of CFTR (PR-CFTR). (c) Validation of 393bp PCR products amplified from Exon 10 of CFTR (EX10-CFTR).

Figure S2.

Sequence alignment using BioEdit of all the processed samples. Red arrows indicate position of V456A mutation.

Archivio Italiano di Urologia e Andrologia 2024; 96(3):12464

Figure S3.

Sequence alignment using BioEdit of all the selected samples. Red arrows indicate position of V456A mutation.

Figure S4.

Structure of the CFTR protein (PDB ID-601V) is displayed. a) The orthoscopic view of CFTR protein.

b) The functional site in Exon 10 is shown in cyan c) The selected region of Exon 10 and identified mutations (V456A, K464E, and G437G) are represented as sticks. d) Mutation V456A e) Mutation K464E f) Mutation G437G. Each mutation is labeled with the corresponding amino acid change and highlights the spatial arrangement of critical regions in the protein using PyMol software.

Figure S5. ConSurf analysis.

1	11	21	31	41
MQ <mark>RSPLEKA</mark> S	VV <mark>S</mark> KLF <mark>F</mark> S <mark>W</mark> T	Rpilrkgyrq	RLELSDIYQI	PSVDSADNLS
51	61	71	81	91
Eklerewdre	LASKKNPKLI	N <mark>alracffra</mark>	FMFYGIFLYL	GEVIKAVQPL
101	111	121	131	141
LLGRIIASYD	PDNKEERSIA	IYLGIGLCLL	FIVRTLLLEP	AIFGLHHIGM
151	161	171	181	191
QMRIAMFSLI	YKKTLKLSSR	VLDKISIGQL	V <mark>SLLSNNLNK</mark>	FDEGLALAEF
201	211	221	231	241
VWIAPLOVAL	LMGLIWELLQ	ASAFCGLGFL	IVLALFQAGL	GRMMMKYRDQ
251	261	271	281	291
RAGKISERLV	ITSEMIENIQ	SVKATCNEEA	MEKMIENL <mark>R</mark> Q	
301	311	321	331	341
Y V R Y F N S S A F	FF <mark>S</mark> GFFVVFL	SVLPYALIKG	IILRKIFTTI	Spcivlrmav
351	361	371	381	391
TRQFFWAVQT	WYDSLGAINK	I Q D F L O K Q E Y	KTLEYNLTTT	EVVHENVTAF
401	411	421	431	441
WEEGFGELFE	K A K Q N N N N R K	TSNGDDSLFF	SNF5LLGTPV	EKDINFKIER
451	461	471	481	491
GQLLAVAGST	GAGKTS <mark>LLM</mark> V	Imgelepseg	Kikesgrisf	CSOFSWIMPG
501	511	521	531	541
TIKENIIFGV	SYDEYRYRSV	IKACQLEEDI	SKEAEKDNIV	LGEGGITLSG
551	561	571	581	591
GQ <mark>RARISLAR</mark>	AVYKDADLYL	LDSPFGYLDV	LTEKEIFESC	VCKLMANKTR

Archivio Italiano di Urologia e Andrologia 2024; 96(3):12464

