Diatom diversity in headwaters influenced by permafrost thawing: First evidence from the Central Italian Alps

Submitted: 10 November 2018
Accepted: 12 December 2018
Published: 20 December 2018
Abstract Views: 2311
PDF: 564
Supplementary: 235
HTML: 57
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Glacier melting and permafrost thawing are the most evident effects of the current climate change that is strongly affecting high mountain areas, including the European Alps. As the thawing rate of subsurface ice is lower than for glacier ice, it is expected that, while glaciers retreat, an increasing number of Alpine headwaters will become more influenced by permafrost degradation during the 21st century. Despite the expected change in the relative importance of glacier and permafrost in determining Alpine hydrology, studies addressing effects of permafrost thawing on chemical and, especially, biological features of adjacent surface waters are still scarce. The present study contributes to characterise the epilithic and epiphytic diatom diversity in a set of permafrost-fed headwaters in three sub-catchments differing in bedrock lithology of the Italian Central Alps (Trentino Alto-Adige) in relation to water chemistry and habitat features. In addition, it explores chemical and biological differences between permafrost-fed streams and headwaters with no direct contact to permafrost, namely glacier-fed (kryal) and precipitation-/groundwater-fed (rhithral) streams. Permafrost-fed waters showed higher electrical conductivity and enhanced ion concentrations than glacier- and precipitation-fed waters, while concentration of trace elements (e.g. Sr, Ni, Zn, As) were more irregularly distributed among waters of different origin, though they showed a tendency to reach higher levels in permafrost-fed waters. Diatom species richness and diversity were lower in permafrost-fed headwaters, and were principally related to water pH and trace metal concentrations. Epiphytic diatom assemblages were more diverse than epilithic ones, independently from the water origin, while differences in species composition were not sufficient to unequivocally identify a typical diatom composition for the different water types considered in this study.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Supporting Agencies

FEM, University of Pavia, IRSA-CNR

How to Cite

Rotta, F., Cerasino, L., Occhipinti-Ambrogi, A., Rogora, M., Seppi, R., & Tolotti, M. (2018). Diatom diversity in headwaters influenced by permafrost thawing: First evidence from the Central Italian Alps. Advances in Oceanography and Limnology, 9(2). https://doi.org/10.4081/aiol.2018.7929