0
0
0
0
Smart Citations
0
0
0
0
Citing PublicationsSupportingMentioningContrasting
View Citations

See how this article has been cited at scite.ai

scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.

Cyanobacterial blooms in the Po River basin and the eastern Alps

Authors

In this paper, we briefly describe episodes of cyanobacterial blooms that have occurred in lakes of northern Italy since 2000. In addition to listing the species involved in these blooms, we provide information on the trophic and ecological status of the water bodies and the presence of algal toxins. Furthermore, we report an example of a risk assessment effort aimed at developing a quality control system for water intended for human consumption. The use of high-frequency monitoring techniques, integrated with predictive modelling, remote sensing, and molecular analysis for species identification, is becoming increasingly important in the context of the effects of ongoing climate change.

APAT IRSA-CNR, 2003. Metodi analitici per le acque. Available from: https://www.irsa.cnr.it/wp/wp-content/uploads/2022/04/Vol1_Sez_1000_Indice_ParteGenerale.pdf
Bresciani M, Giardino C, Lauceri R, et al., 2017. Earth observation for monitoring and mapping of cyanobacteria blooms. Case studies on five Italian lakes. J. Limnol. 76:127-39. DOI: https://doi.org/10.4081/jlimnol.2016.1565
Callieri C, Bertoni R, Contesini M, Bertoni F, 2014. Lake level fluctuations boost toxic cyanobacterial oligotrophic blooms. PLoS ONE. 9:e109526 DOI: https://doi.org/10.1371/journal.pone.0109526
Capelli C, Ballot A, Cerasino L, et al., 2017. Biogeography of bloom-forming microcystin producing and non-toxigenic populations of Dolichospermum lemmermannii (Cyanobacteria). Harmful Algae. 67:1-12. DOI: https://doi.org/10.1016/j.hal.2017.05.004
Chorus I, Welker M (eds), 2021. Toxic cyanobacteria in water, second edition. CRC Press, Boca Raton (FL), USA, on behalf of the World Health Organization, Geneva, CH, Switzerland. DOI: https://doi.org/10.1201/9781003081449
CIPAIS, 2024. Ricerche sull’evoluzione del Lago Maggiore. Aspetti limnologici. Programma triennale 2022-2024. Campagna 2023. Available from: https://www.cipais.org/web/wp-content/uploads/2024/11/S1-RM-CIPAIS_Rapporto_2023_limnologia_Maggiore.pdf
Fenocchi A, Rogora M, Marchetto A, et al., 2020. Model simulations of the ecological dynamics induced by climate and nutrient load changes for deep subalpine Lake Maggiore (Italy/Switzerland). J. Limnol. 79:221-37. DOI: https://doi.org/10.4081/jlimnol.2020.1963
Fenocchi A, Rogora M, Morabito G, et al., 2019. Applicability of a one-dimensional coupled ecological-hydrodynamic numerical model to future projections in a very deep large lake (Lake Maggiore, Northern Italy/Southern Switzerland). Ecol. Model. 392:38-51. DOI: https://doi.org/10.1016/j.ecolmodel.2018.11.005
Funari E, Manganelli M, Testai E (Eds.), 2014. Cianobatteri: linee guida per la gestione delle fioriture nelle acque di balneazione. Available from: https://openpub.fmach.it/retrieve/handle/10449/27257/18163/
Giardino C, Brando VE, Gege P, et al., 2019. Imaging spectrometry of inland and coastal waters: state of the art, achievements and perspectives. Surv. Geophys. 40:401-29. DOI: https://doi.org/10.1007/s10712-018-9476-0
Gurbuz F, Metcalf JS, Codd GA, Karahan G, 2012. Evaluation of enzyme-linked immunosorbent assays (ELISAs) for the determination of microcystins in cyanobacteria. Environmental Forensics. 13:105-9. DOI: https://doi.org/10.1080/15275922.2012.676596
Hilt S, Jeppesen E, Veraart AJ, Kosten S, 2017. Translating regime shifts in shallow lakes into changes in ecosystem functions and services. BioScience. 67:928-36. DOI: https://doi.org/10.1093/biosci/bix106
ISPRA, 2014. Metodi biologici per le acque superficiali interne. Available from: https://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/metodi-biologici-per-le-acque-superficiali-interne
Leoni B, Spreafico M, Patelli M, et al., 2019. Long-term studies for evaluating the impacts of natural and anthropic stressors on limnological features and the ecosystem quality of Lake Iseo: responses to local and globalstressors in Lake Iseo. Adv. Oceanogr. Limnol. 10:81-93. DOI: https://doi.org/10.4081/aiol.2019.8622
Lepori F, Lucchini B, Capelli C, Rotta F, 2022. Mesotrophy is not enough: re-assessing phosphorus objectives for the restoration of a deep Alpine lake (Lake Lugano, Switzerland and Italy). Adv. Oceanogr. Limnol. 13:11061. DOI: https://doi.org/10.4081/aiol.2022.11061
Metz K, Hanselmann K, Preisig HR, 1998. Environmental conditions in high mountain lakes containing toxic benthic cyanobacteria. Hydrobiologia. 368:1-15.
Ndong M, Bird D, Nguyen-Quang T, et al., 2014. Estimating the risk of cyanobacterial occurrence using an index integrating meteorological factors: application to drinking water production. Water Res. 56:98-108. DOI: https://doi.org/10.1016/j.watres.2014.02.023
Rogora M, Buzzi F, Dresti C, et al., 2018. Climatic effects on vertical mixing and deep-water oxygen content in thesubalpine lakes in Italy. Hydrobiologia. 824:33-50. DOI: https://doi.org/10.1007/s10750-018-3623-y
Rousso ZB, Bertone E, Stewart R, et al., 2019. Optical sensors and machine learning for optimised cyanobacteria bloom management. Available from: https://www.iahr.org/library/infor?pid=3299
Salmaso N, Bernabei S, Boscaini A, et al., 2024a. Biodiversity patterns of cyanobacterial oligotypes in lakes and rivers: results of a large‑scale metabarcoding survey in the Alpine region. Hydrobiologia. 851:1035-62. DOI: https://doi.org/10.1007/s10750-023-05423-z
Salmaso N, Boscaini A, Capelli C, et al., 2015a. Historical colonization patterns of Dolichospermum lemmermannii (Cyanobacteria) in a deep lake south of the Alps. Advances in Oceanography and Limnology. 6:33-45. DOI: https://doi.org/10.4081/aiol.2015.5456
Salmaso N, Capelli C, Shams S, Cerasino L, 2015b. Expansion of bloom-forming Dolichospermum lemmermannii (Nostocales, Cyanobacteria) to the deep lakes south of the Alps: Colonization patterns, driving forces and implications for water use. Harmful Algae. 50:76-87. DOI: https://doi.org/10.1016/j.hal.2015.09.008
Salmaso N, Cerasino L, Pindo M, Boscaini A, 2024b. Taxonomic and functional metagenomic assessment of a Dolichospermum bloom in a large and deep lake south of the Alps. FEMS Microbiology Ecology. 100:fiae117. DOI: https://doi.org/10.1093/femsec/fiae117
Sterner RW, 2021. The Laurentian Great Lakes: a biogeochemical test bed. Annu Rev. Earth Planet. Sci. 49:201-29. DOI: https://doi.org/10.1146/annurev-earth-071420-051746
Sterner RW, Keeler B, Polasky S, et al., 2020. Ecosystem services of Earth’s largest freshwater lakes. Ecosystem Services. 41:101046. DOI: https://doi.org/10.1016/j.ecoser.2019.101046
Viaroli P, Azzoni R, Bartoli M, et al., 2018. Persistence of meromixis and its effects on redox conditions and trophic status in Lake Idro (Southern Alps, Italy). Hydrobiologia. 824:51-69. DOI: https://doi.org/10.1007/s10750-018-3767-9
Wolfram G, Buzzi F, Dokulil M, et al., 2014. Water Framework Directive intercalibration technical report: Alpine lake phytoplankton ecological assessment methods. Available from: https://op.europa.eu/en/publication-detail/-/publication/da6188e5-47e3-44e4-a390-b4fa55c1eee0/language-en

How to Cite

Buzzi, F., Agostinelli, C., Alber, R., Beghi, A., Bettoni, E., Bressan, E., Caraffini, K., Carena, E., Caviglia, F., Dossena, M., Fogliati, P. L., Formenti, R., Franzini, G., Fumagalli, R., Giacomazzi, F., Lazzeri, F., Marchesi, M., Masala, E., Montanari, P., Nasello, M., Nastasi, F., Pandolfi, F., Vietti, F., Virgilio, D., Vorhauser, S., Zampieri, C., & Zanut, E. (2025). Cyanobacterial blooms in the Po River basin and the eastern Alps. Advances in Oceanography and Limnology, 16(1). https://doi.org/10.4081/aiol.2025.12584

Similar Articles

You may also start an advanced similarity search for this article.