Dominance of small-sized phytoplankton in a Mediterranean eutrophic coastal lagoon

Submitted: 22 December 2022
Accepted: 14 April 2023
Published: 20 June 2023
Abstract Views: 2937
PDF: 573
SUPPLEMENTARY PDF: 0
HTML: 42
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The predator-prey relationship is generally size-specific in the pelagic food webs. Phytoplankton cell size structure can provide information on the successive levels of consumers and therefore on the energy that can flow towards the top consumers. This work focuses on phytoplankton cell size structure in a coastal lagoon (Cabras Lagoon, Italy) considered one of the most important for fishing productivity in the Mediterranean. The inter-annual and seasonal dynamics of picophytoplankton (Pico, cell size <3 μm) and Utermöhl Fraction of Phytoplankton (UFP, cell size >3 μm) were considered during almost three years in relation to the temporal dynamics of selected environmental variables and zooplankton. Small-sized cells with a mean linear cell size <10 μm and a mean cell volume <103 μm3 mainly represented UFP along the entire study period. This size class contributed the most to total phytoplankton biomass (up to 86%) and density (up to 99%) during the first part of the investigation period. A compositional change was detected: smaller species of Chlorophyceae, Bacillariophyceae, filamentous Cyanophyceae, and autotrophic nanoflagellates thrived in the second part of the study, replacing larger Mediophyceae that dominated UFP at the beginning. Picocyanobacteria rich in phycocyanin were the dominant taxa of Pico along the entire investigation period and this size class contributed the most to total phytoplankton biomass (up to 30%) and density (up to 96%) at the end of the study. The observed shift towards different and even smaller UFP and Pico in the second part of the study was most probably due to complex interactions between top-down and bottom-up effects. Indeed, an increased temperature, a decreased salinity and decreased concentrations of nutrients (mainly ammonium and orthophosphate), as well as an increased grazing pressure of rotifers on the larger Mediophyceae were simultaneous with the changes detected in phytoplankton. The obtained results highlight a longer planktonic trophic web in Cabras Lagoon that includes small phytoplankton at the base, ciliates, rotifers, and copepods. This suggests low energy availability for planktivorous fish, with possible future relevant consequences for fishing activities in this coastal lagoon.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Avancini M, Cicero AM, Di Girolamo I, et al., 2006. Guida al Riconoscimento del Plancton dei Mari Italiani. Volume II: Zooplancton Neritico-Testo. ICRAM, 198 pp. Available from: https://www.isprambiente.gov.it/it/pubblicazioni/manuali-e-linee-guida/guida-al-riconoscimento-del-plancton-dei-mari
Barbosa AB, Domingues RB, Galvão HM, 2010. Environmental forcing of phytoplankton in a Mediterranean Estuary (Guadiana Estuary, South-western Iberia): A decadal study of anthropogenic and climatic influences. Estuaries Coast. 33:324–41. DOI: https://doi.org/10.1007/s12237-009-9200-x
Bec B, Collos Y, Souchu P, et al., 2011. Distribution of picophytoplankton and nanophytoplankton along an anthropogenic eutrophication gradient in French Mediterranean coastal lagoons. Aquat. Microb. Ecol. 63:29–45. DOI: https://doi.org/10.3354/ame01480
Berglund J, Müren U, Båmstedt U, Andersson A, 2007. Efficiency of a phytoplankton-based and a bacterial-based food web in a pelagic marine system. Limnol. Oceanogr. 52:121–31. DOI: https://doi.org/10.4319/lo.2007.52.1.0121
Bolker BM, Brooks ME, Clark CJ, et al., 2008. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24:127–35. DOI: https://doi.org/10.1016/j.tree.2008.10.008
Bonecker CC, Aoyagui ASM, 2005. Relationships between rotifers, phytoplankton and bacterioplankton in the Corumbá reservoir, Goiás State, Brazil. Hydrobiologia 546:415–21. DOI: https://doi.org/10.1007/s10750-005-4284-1
Boyce DG, Frank KT, Leggett WC, 2015. From mice to elephants: overturning the ‘one size fits all’ paradigm in marine plankton food chains. Ecol. Lett. 18:504–15. DOI: https://doi.org/10.1111/ele.12434
Boyce DG, Worm B, 2015. Patterns and ecological implications of historical marine phytoplankton change. Mar. Ecol. Prog. Ser. 534:251–72. DOI: https://doi.org/10.3354/meps11411
Bratbak G, 1985. Bacterial biovolume and biomass estimation. Appl. Environ. Microbiol. 49:1488–1493. DOI: https://doi.org/10.1128/aem.49.6.1488-1493.1985
Cabré A, Shields D, Marinov I, Kostadinov TS, 2016. Phenology of size-partitioned phytoplankton carbon-biomass from ocean color remote sensing and CMIP5 models. Front. Mar. Sci. 3:39. DOI: https://doi.org/10.3389/fmars.2016.00039
Cahoon L, 2016. Tychoplankton. In: M.J. Kennish (eds.), Encyclopedia of Estuaries. Encyclopedia of Earth Sciences Series. Springer, New York, USA. 778 pp. DOI: https://doi.org/10.1007/978-94-017-8801-4_292
Cai H, Wang K, Huang S, et al., 2010. Distinct patterns of picocyanobacterial communities in winter and summer in the Chesapeake Bay. Appl. Environ. Microbiol. 76:2955–60. DOI: https://doi.org/10.1128/AEM.02868-09
Caroppo C, 2015. Ecology and biodiversity of picoplanktonic cyanobacteria in coastal and brackish environments. Biodivers. Conserv. 24:949–971. DOI: https://doi.org/10.1007/s10531-015-0891-y
Caroppo C, Musco L, Stabili L, 2014. Planktonic assemblages in a coastal mediterranean area subjected to anthropogenic pressure. J. Geogr. Nat. Disasters 4:121. DOI: https://doi.org/10.4172/2167-0587.1000121
Chust G, Allen JI, Bopp L, et al., 2014. Biomass changes and trophic amplification of plankton in a warmer ocean. Glob. Chang. Biol 20:2124–39. DOI: https://doi.org/10.1111/gcb.12562
Cicero F, Marino G, Nasta E, et al., 2016. Biodiversità, habitat pelagico e specie non indigene – mesozooplancton. ARPA Sicilia ST3 Area Mare. EU Marine Strategy Framework Directive 2008/56/EC, 198 pp.
Cloern JE, Jassby DJ, 2010. Patterns and scales of phytoplankton variability in estuarine–coastal ecosystems. Estuaries Coast. 33:230–41. DOI: https://doi.org/10.1007/s12237-009-9195-3
Collos Y, Bec B, Jauzein C, et al., 2009. Oligotrophication and emergence of picocyanobacteria and a toxic dinoflagellate in Thau lagoon, southern France. J. Sea Res. 61:68–75. DOI: https://doi.org/10.1016/j.seares.2008.05.008
Como S, Magni P, Van Der Velde G, et al., 2012. Spatial variations in δ13C and δ15N values of primary consumers in a coastal lagoon. Estuar. Coast. Shelf Sci. 115:300–8. DOI: https://doi.org/10.1016/j.ecss.2012.07.032
Como S, Van Der Velde G, Magni P, 2018. Temporal variation in the trophic levels of secondary consumers in a Mediterranean coastal lagoon (Cabras lagoon, Italy). Estuaries Coast. 41:218–32. DOI: https://doi.org/10.1007/s12237-017-0265-7
D’Alelio D, Libralato S, Wyatt T, Ribera d’Alcalà M, 2016a. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 6:1–13. DOI: https://doi.org/10.1038/srep21806
D’Alelio D, Montresor M, Mazzocchi MG, et al., 2016b. Plankton food-webs: to what extent can they be simplified? Adv. Oceanogr. Limnol. 7:67–92. DOI: https://doi.org/10.4081/aiol.2016.5646
D’Alelio D, Rampone S, Cusano LM, et al., 2020. Machine learning identifies a strong association between warming and reduced primary productivity in an oligotrophic ocean gyre. Sci. Rep. 10:3287. DOI: https://doi.org/10.1038/s41598-020-59989-y
Eddy TD, Bernhardt JR, Blanchard JL, et al., 2021. Energy flow through marine ecosystems: Confronting transfer efficiency. Trends Ecol. Evol. 36:76–86. DOI: https://doi.org/10.1016/j.tree.2020.09.006
Ferrarin C, Bajo M, Bellafiore D, et al., 2014. Toward homogenization of Mediterranean lagoons and their loss of hydrodiversity. Geophys. Res. Lett. 41:5935–41. DOI: https://doi.org/10.1002/2014GL060843
Finkel ZV, Beardall J, Flynn KJ, et al., 2010. Phytoplankton in a changing world: Cell size and elemental stoichiometry. J. Plankton Res. 32:119–37. DOI: https://doi.org/10.1093/plankt/fbp098
Fussmann G, 1996. The importance of crustacean zooplankton in structuring rotifer and phytoplankton communities; an enclosure study. J. Plankton Res. 18:1897–915. DOI: https://doi.org/10.1093/plankt/18.10.1897
Gilabert J, 2001. Seasonal plankton dynamics in a Mediterranean hypersaline coastal lagoon: the Mar Menor. J. Plankton Res. 23:207–17. DOI: https://doi.org/10.1093/plankt/23.2.207
Harris GP, 1986. Phytoplankton Ecology: Structure, Function and Fluctuation. Chapman and Hall, London: 384 pp.
Hemraj DA; Hossain A, Ye Q, et al., 2017. Anthropogenic shift of planktonic food web structure in a coastal lagoon by freshwater flow regulation. Sci. Rep. 7:1–10. DOI: https://doi.org/10.1038/srep44441
Hillebrand H, Acevedo-Trejos E, Moorthi SD, et al., 2022. Cell size as driver and sentinel of phytoplankton community structure and functioning. Funct. Ecol. 36:276–93. DOI: https://doi.org/10.1111/1365-2435.13986
Hillebrand H, Dürselen CD, Kirschtel D, et al., 1999. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35:403–24. DOI: https://doi.org/10.1046/j.1529-8817.1999.3520403.x
IPCC 2021. Sixth Assessment Report WGII. Cross-Chapter Paper 4: Mediterranean Region.
Johansson M, Gorokhova E, Larsson U, 2004. Annual variability in ciliate community structure potential prey and predators in the open northern Baltic Sea proper. J. Plankton Res. 26:67–80. DOI: https://doi.org/10.1093/plankt/fbg115
Kéfi S, Berlow EL, Wieters EA, et al., 2015. Network structure beyond food webs: mapping non-trophic and trophic interactions on Chilean rocky shores. Ecology 96:291–303. DOI: https://doi.org/10.1890/13-1424.1
Kruk C, Martínez A, Nogueira L, et al., 2015. Morphological traits variability reflects light limitation of phytoplankton production in a highly productive subtropical estuary (Río de la Plata, South America). Mar. Biol. 162:331–41. DOI: https://doi.org/10.1007/s00227-014-2568-6
Lewandowska AM, Hillebrand H, Lengfellner K, Sommer U, 2014. Temperature effects on phytoplankton diversity – The zooplankton link. J. Sea Res. 85:359–64. DOI: https://doi.org/10.1016/j.seares.2013.07.003
Lewandowska AM, Sommer U, 2010. Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Mar. Ecol. Prog. Ser. 405:101–11. DOI: https://doi.org/10.3354/meps08520
Litchman E, Klausmeier CA, 2008. Trait-based community ecology of phytoplankton. Annu Rev Ecol. Evol. Syst. 39:615–39. DOI: https://doi.org/10.1146/annurev.ecolsys.39.110707.173549
Litchman, E, de Tezanos Pinto P, Klausmeier CA, et al., 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653:15–28. DOI: https://doi.org/10.1007/s10750-010-0341-5
Litchman E, Klausmeier CA, Schofield OM, Falkowski PG, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol. Lett. 10:1170–81. DOI: https://doi.org/10.1111/j.1461-0248.2007.01117.x
Lomas MW, Bates NR, Johnson RJ, et al., 2022. Adaptive carbon export response to warming in the Sargasso Sea. Nat. Commun. 13:1211. DOI: https://doi.org/10.1038/s41467-022-28842-3
MacIsaac EA, Stockner JG, 1993. Enumeration of phototrophic picoplankton by autofluorescence microscopy, p. 187-197. In: P.F. Kemp, B.F. Sherr, E.B. Sherr and J.J. Cole (eds.), Handbook of methods in aquatic microbial ecology. Lewis Publisher. 800 pp. DOI: https://doi.org/10.1201/9780203752746-24
Magni P, Semprucci F, Gravina MF, 2022. Joint analysis of macrofaunal and meiofaunal assemblages improves the assessment of lagoonal environmental heterogeneity. Estuar. Coast. Shelf Sci. 266:107740. DOI: https://doi.org/10.1016/j.ecss.2021.107740
Marañón E, Cermeño, Jodríguez J, et al., 2007. Scaling of phytoplankton photosynthesis and cell size in the ocean. Limnol. Oceanogr. 52:2190–8. DOI: https://doi.org/10.4319/lo.2007.52.5.2190
Mazur-Marzec H, Sutryk K, Kobos J, et al., 2013. Occurrence of cyanobacteria and cyanotoxin in the Southern Baltic proper. Filamentous cyanobacteria versus single-celled picocyanobacteria. Hydrobiologia. 701:235–52. DOI: https://doi.org/10.1007/s10750-012-1278-7
Menden-Deuer S, Lessard EJ, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569–79. DOI: https://doi.org/10.4319/lo.2000.45.3.0569
Morabito G, Mazzocchi MG, Salmaso N, et al., 2018. Plankton dynamics across the freshwater transitional and marine research sites of the LTER-Italy Network Patterns fluctuations drivers. Sci. Total. Environ. 627:373–87. DOI: https://doi.org/10.1016/j.scitotenv.2018.01.153
Naselli Flores L, Zohary T, Padisák J, 2021. Life in suspension and its impact on phytoplankton morphology: an homage to Colin S. Reynolds. Hydrobiologia 848:7–30. DOI: https://doi.org/10.1007/s10750-020-04217-x
Newton A, Icely J, Cristina S, et al., 2014. An overview of ecological status vulnerability and future perspectives of European large shallow semi-enclosed coastal systems lagoons and transitional waters. Estuar. Coast. Shelf Sci. 140:95–122. DOI: https://doi.org/10.1016/j.ecss.2013.05.023
Padedda BM, Lugliè A, Ceccherelli G, et al., 2010. Nutrient-flux evaluation by the LOICZ biogeochemical model in mediterranean lagoons: the case of Cabras Lagoon (central-western Sardinia). Chem. Ecol. 26:147–62. DOI: https://doi.org/10.1080/02757541003627670
Paerl RW, Rebecca E, Venezia RE, et al., 2020. Picophytoplankton dynamics in a large temperate estuary and impacts of extreme storm events. Sci. Rep. 10:22026. DOI: https://doi.org/10.1038/s41598-020-79157-6
Paul C, Sommer U, Matthiessen B, 2021. Composition and dominance of edible and inedible phytoplankton predict responses of Baltic Sea summer communities to elevated temperature and CO2. Microorganisms 9:2294. DOI: https://doi.org/10.3390/microorganisms9112294
Peter KH, Sommer U, 2012. Phytoplankton cell size, inter- and intraspecific effects of warming and grazing. PLoS ONE 7:e49632. DOI: https://doi.org/10.1371/journal.pone.0049632
Peter KH, Sommer U, 2013. Phytoplankton cell size reduction in response to warming mediated by nutrient limitation. PLoS ONE 8:e71528. DOI: https://doi.org/10.1371/journal.pone.0071528
Pilosof S, Porter MA, Pascual M, Kéfi S, 2017. The multilayer nature of ecological networks. Nat. Ecol. Evol. 1:1–9. DOI: https://doi.org/10.1038/s41559-017-0101
Pinheiro J, Bates D, DebRoy S, Sarkar D, 2012. R development core team, nlme: linear and nonlinear mixed effects models. R Package Version 3:1–105.
Polovina JJ, Woodworth PA, 2012. Declines in phytoplankton cell size in the subtropical oceans estimated from satellite remotely-sensed temperature and chlorophyll, 1998–2007. Deep Sea Res. Part II: 77–80, 82–88. DOI: https://doi.org/10.1016/j.dsr2.2012.04.006
Pugnetti A, Acri F, Bernardi Aubry F, et al., 2013. The Italian Long-Term Ecosystem Research (LTER-Italy) network: results, opportunities, and challenges for coastal transitional ecosystems. Transit. Waters Bull. 7:43–63.
Pulina S, Padedda BM, Satta CT, et al., 2012. Long-term phytoplankton dynamics in a Mediterranean eutrophic lagoon (Cabras Lagoon, Italy). Plant Biosyst. 146:259–72. DOI: https://doi.org/10.1080/11263504.2012.717545
Pulina S, Padedda BM, Sechi N, Lugliè A, 2011. The dominance of cyanobacteria in Mediterranean hypereutrophic lagoons: a case study of Cabras Lagoon (Sardinia Italy). Sci. Mar. 75:111–20. DOI: https://doi.org/10.3989/scimar.2011.75n1111
Pulina S, Satta CT, Padedda BM, et al., 2017. Picophytoplankton seasonal dynamics and interactions with environmental variables in three Mediterranean coastal lagoons. Estuaries Coast. 40:469–78. DOI: https://doi.org/10.1007/s12237-016-0154-5
Pulina S, Satta CT, Padedda BM, et al., 2018. Seasonal variations of phytoplankton size structure in relation to environmental variables in three Mediterranean shallow coastal lagoons. Estuar. Coast. Shelf Sci. 212:95–104. DOI: https://doi.org/10.1016/j.ecss.2018.07.002
Pulina S, Suikkanen S, Satta CT, et al., 2016. Multiannual phytoplankton trends in relation to environmental changes across aquatic domains: a case study from Sardinia (Mediterranean Sea). Plant Biosyst. 150:660–70. DOI: https://doi.org/10.1080/11263504.2014.989283
Pulina S, Suikkanen S, Padedda BM, et al., 2020. Responses of a Mediterranean coastal lagoon plankton community to experimental warming. Mar. Biol. 167:22. DOI: https://doi.org/10.1007/s00227-019-3640-z
R Core Team, 2020. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.r-project.org/index.html.
Ramdani M, Elkhiati N, Flower RJ, et al., 2009. Environmental influences on the qualitative and quantitative composition of phytoplankton and zooplankton in North African coastal lagoons. Hydrobiologia 622:113–31 DOI: https://doi.org/10.1007/s10750-008-9678-4
Russo L, Casella V, Marabotti A, et al., 2022. Trophic hierarchy in a marine community revealed by network analysis on co-occurrence data. Food Webs 32:e00246. DOI: https://doi.org/10.1016/j.fooweb.2022.e00246
Satta CT, Anglès S, Garcés E, et al., 2014. Dinoflagellate cyst assemblages in surface sediments from three shallow Mediterranean lagoons (Sardinia, north western Mediterranean Sea. Estuaries Coast. 37:646–663. DOI: https://doi.org/10.1007/s12237-013-9705-1
Schapira M, Buscot MJ, Pollet T, et al., 2010. Distribution of picophytoplankton communities from brackish to hypersaline waters in a south Australian coastal lagoon. Saline Syst. 6:2. DOI: https://doi.org/10.1186/1746-1448-6-2
Sommer U, Aberle N, Engel A, et al., 2007. An indoor mesocosm system to study the effect of climate change on the late winter and spring succession of Baltic Sea phyto- and zooplankton. Oecologia 150:655–67. DOI: https://doi.org/10.1007/s00442-006-0539-4
Sommer U, Charalampous E, Genitsaris S, Moustaka-Gouni M, 2017a. Benefits, costs and taxonomic distribution of marine phytoplankton body size. J. Plankton Res. 39:494–508. DOI: https://doi.org/10.1093/plankt/fbw071
Sommer U, Peter KH, Genitsaris S, Moustaka-Gouni M, 2017b. Do marine phytoplankton follow Bergmann’s rule sensu lato? Biol. Rev. 92:1011–26. DOI: https://doi.org/10.1111/brv.12266
Sorokin PYu, Sorokin YuI, Boscolo R, Giovanardi O, 2004. Bloom of picocyanobacteria in the Venice lagoon during summer–autumn 2001: ecological sequences. Hydrobiologia 523:71–85. DOI: https://doi.org/10.1023/B:HYDR.0000033096.14267.43
Strickland JDH, Parsons TR, 1972. A practical handbook of seawater analysis. Fisheries Research Board of Canada, Ottawa. 167 pp.
Strom SL, Brainard MA, Holms JL, Olson MB, 2001. Phytoplankton blooms are strongly impacted by microzooplankton grazing in coastal North Pacific Waters. Mar. Biol. 138:355–68. DOI: https://doi.org/10.1007/s002270000461
Suikkanen S, Pulina S, Engström-Öst J, et al., 2013. Climate change and eutrophication induced shifts in northern summer plankton communities. PLos ONE 8:e66475. DOI: https://doi.org/10.1371/journal.pone.0066475
Sutherland KR, Madin LP, Stocker R, 2010. Filtration of submicrometer particles by pelagic tunicates. PNAS 107:15129–34. DOI: https://doi.org/10.1073/pnas.1003599107
Sweeney K, Rollwagen‑Bollens G, Hampton SE, 2022. Grazing impacts of rotifer zooplankton on a cyanobacteria bloom in a shallow temperate lake (Vancouver Lake, WA, USA). Hydrobiologia 849:2683–703. DOI: https://doi.org/10.1007/s10750-022-04885-x
Tamigneaux E, Vasquez E, Mingelbier M, et al., 1995. Environmental control of phytoplankton assemblages in nearshore waters, with special emphasis on phototrophic ultraplankton. J. Plankton Res. 17:1421–47. DOI: https://doi.org/10.1093/plankt/17.7.1421
Trombetta T, Vidussi F, Roques C, et al., 2021. Co-occurrence networks reveal the central role of temperature in structuring the plankton community of the Thau Lagoon. Sci. Rep. 11:17675. DOI: https://doi.org/10.1038/s41598-021-97173-y
Utermöhl H, 1958. Zur vervollkommung der quantitativen phytolankton-methodik. Mitt d Internat Vereinig f. Limnologie 9:1–39. DOI: https://doi.org/10.1080/05384680.1958.11904091
Vadrucci MR, Mazziotti C, Fiocca A, 2013. Cell biovolume and surface area in phytoplankton of Mediterranean transitional water ecosystems: methodological aspects. Transit. Waters Bull. 7:100–23.
Van de Waal DB, Litchman E, 2020. Multiple global change stressor effects on phytoplankton nutrient acquisition in a future ocean. Phil. Trans. R. Soc. B. 375:20190706. DOI: https://doi.org/10.1098/rstb.2019.0706
Vidussi F, Mostajir B, Fouilland E, et al., 2011. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnol. Oceanogr. 56:206–18. DOI: https://doi.org/10.4319/lo.2011.56.1.0206
Wang F, Wei Y, Zhang G, et al., 2022. Picophytoplankton in the West Pacific Ocean: a snapshot. Front. Microbiol. 13:811227. DOI: https://doi.org/10.3389/fmicb.2022.811227
Xia X, Guo W, Tan S, Liu H, 2017. Synechococcus assemblages across the salinity gradient in a salt Wedge Estuary. Front. Microbiol. 8:1254. DOI: https://doi.org/10.3389/fmicb.2017.01254
Zheng X, Como S, Huang L, Magni P, 2020. Temporal changes of a food web structure driven by different primary producers in a subtropical eutrophic lagoon. Mar. Environ. Res. 161:105128. DOI: https://doi.org/10.1016/j.marenvres.2020.105128
Zingone A, Phlips EJ, Harrison PJ, 2010. Multiscale variability of twenty-two coastal phytoplankton time series: A global scale comparison. Estuaries Coast. 33:224–9. DOI: https://doi.org/10.1007/s12237-009-9261-x

How to Cite

Pulina, S., Satta, C. T., Padedda, B. M., Culurgioni, J., Diciotti, R., Fois, N., & Lugliè, A. (2023). Dominance of small-sized phytoplankton in a Mediterranean eutrophic coastal lagoon. Advances in Oceanography and Limnology, 14(1). https://doi.org/10.4081/aiol.2023.11112