Finite element modelling of the femur bone of a subject suffering from motor neuron lesion subjected to electrical stimulation


Submitted: 6 December 2013
Accepted: 5 February 2014
Published: 7 April 2014
Abstract Views: 2106
PDF: 1119
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Bone loss and a decrease in bone mineral density is frequently seen in patients with motor neuron lesion due to lack of mechanical stimulation. This causes weakening of the bones and a greater risk of fracture. By using functional electrical stimulation it is possible to activate muscles in the body to produce the necessary muscle force to stimulate muscle growth and potentially decrease the rate of bone loss. A longitudinal study was carried out on a single patient undergoing electrical stimulation over a 6 year period. The patient underwent a CT scan each year and a full three dimensional finite element model for each year was created using Mimics (Materialise) and Abaqus (Simulia) to calculate the risk of fracture under physiologically relevant loading conditions. Using empirical formulas connecting the bone mineral density to the stiffness and ultimate tensile stress of the bone, each element was assigned a unique material property, based on its density. The risk of fracture was estimated by calculating the ratio between the predicted stress and the ultimate tensile stress, should it exceed unity, failure was assumed. The results showed that the number of elements that were predicted to be at risk of failure varied between years.

Magnus K. Gislason, Institute of Biomedical and Neural Engineering (BNE), Reykjavik University
Lecturer, Department of Biomedical Engineering, School of Science and Technology

Supporting Agencies

None

Gislason, M. K., Ingvarsson, P., Gargiulo, P., Yngvason, S., Guðmundsdóttir, V., Knútsdóttir, S., & Helgason, Þórður. (2014). Finite element modelling of the femur bone of a subject suffering from motor neuron lesion subjected to electrical stimulation. European Journal of Translational Myology, 24(3). https://doi.org/10.4081/ejtm.2014.2187

Downloads

Download data is not yet available.

Citations